
SE CUR IT Y CLASSIF ICArION 0f I t O P'A

EPORT AD-A265 669 N

Iam EOTSCRT CLASSIFICAIlot iorj 111
Unclassif ied jý j ýt ili

2.- SECURITY CLASSIFICATION AUT VAIL I Lhisd'a .

Sc . M ý i Ia:.- f Or1Tr1Y r-T~G -n at t
2b, DECLASSIIF ICATiONfOOWN1G RA S LISL~io sýQ c

4. PERFORMING ORGANIZATION R NUMBEI DRP . MON ITORI NG ORGANI ZA TION n C POR4J, 1VI'lleI RS

U 1ISI Report #5752-3 VS'i
6& NAME OF PERFORMING ORGANIZATION QOFFICE SYMBOL 7a. NAME OF MONITORING ORGANJIZATION

(it applicable)fl Integrated SystemsInct._ _____ USAF, AFOSR
6
c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

I3260 j Jay Street Building 410
Santa Clara, CAL 95054 Boiling AFB, DC 20332

5a.. NAME OF FUNIDING/SPONSORING 8b. OFF ICE SYMBOL. 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERI ORGANIZATION (Ij'opplicable)

AFOSR I NM F49620-89-C-0119

Sc- ADDRESS (City. Stole and ZIP Code) 10. SOURCE OF FUNDING NOS. ______________

PROGRAM PROJECT TASK WORK UNIT
Boiling APB ELEMENT NO- NO. NO. NO.

Washington D.C., 20332 .-

1. TIT F(nctude Security Clauifica lion)

( U) Set-Memnbership Identification for Robust Control Design ___________________

1.PERSONAL A UTHOR(SI Dr. Robert L. Kosul.

Final Report "IROM o 9IL&9 -C1IL 3 LL9 4/28/93

16. SUPPLEMENTARY NOTATION

17. COSATICCODES 113. SU BJE CT TE RMS (Con linue on retuerse it necem.ary and iden tify by '.lock nuen b~eet

F IIE LD GROUP sue. GR.

19 ABS TRACT (Continue on ,e'uerse if neccssw'y -nd identify by b~iock ii iirderl

'[Ihis report, describes accomnplisbhments in dleveloping methods of systern identification for robiisi
Control deCsign . [he starting point is an a pr-iori plant description containing both pa-rallel nc
arl(I rnorparametric unlcertainty. Tile idlentification mrethod s are developed un rder diff~erinrg a prtrpri
assumrptions onl tile parametric and( nonpararnetric. parts of the model set. For example, when aU 1bound on the noniparametric part, is known, it is shownl that the parameters in the parametlric
part of the model are contained in either an ellip~soid or hyperboloid , (lependling on the (Ia la.
Cornputationlal method1s are very similar to standlard lea~st-squa~res methods and ca~n be corn pi edI ~ ~ir a. b~atch or recursive manner. T[he parameter set memb~ership (description is used for robust cowtrol
dt'sigri via. a inini- max optimization problem. Othler approaches explored incld! hid11gb-order A H X
models whiich produrce pulrely paramnetric uin certainty iind (er standard sta~tistic-al assump;t.imis onI lb te d isturbrlances. A learning schern e is also invest~igatedl where the cont~rol and id ,n t~ifi calmoi are
irferafi vvly con pled by the closed- loop.____________________________________________

?0 (-1' 141 8UT ION/AVAILABILITY OF AH-'TRACT 21 ABSTRIACT SECUfer Y CtASSIFICATION

0ICIA-,SlrqF3O/URLIMITfnO WSAML AS. "PT L) 1l w~ u¶;Ro IS

22a tM"FI- OF RPUTP;OIJrIflLE INOIVIORjAI 27.1, 1 T.-PI4ONE: NUMnUR 22c (I CE SYMB)OL
(bicli,did AmaoC~rIDr. Robert L. KosuL 1408-980-1500 1

DD F-01M 1473, 83 APR I()I I 1,)r) () JAN /l 11 i ( 01 f TI



I
I %integrated

systems
* Final Technical Report

I September 1989 through 31 March 1993I
* Set-Membership Identification

for Robust Control Design

(Contract No. F49620-89-C-01 19)

Prepared by: [Y

Dr. Robert L. Kosut D. it 1

Integrated Systems Inc.
3260 Jay St. ;- ....

Santa Clara, California 95054

Prepared for:

Air Force Office of Scientific Research (AFOSR)
Directorate of Mathematical and Cornputei Scieices

Building 410
Bolling Air Force base
Washington, DC 20332

I
Approved by:

S.............. I......... .................

Dr. Robert L. Kosut
Manager, Research Group1
S/4, •: 93-13128
D D r. Robert M. Dresse r I ei. IIII I II oIII III
Vice President, Adavan ce(I Systems Departiment

I [TS leport No. 5752-3
28 \pril 1993

IItilegrated 93 SvIs. in(.

Ef I -,i) (•() I.



Contents

3 1 Introduction 1

1.1 Background and Motivation ........ ................................ 1

U1.2 Model Accuracy Estimation ........ ................................ 2

1.3 On the Character of Uncertainty ........ ............................. 3

I 1.4 Computing the Estimate................................... 4

1.5 MIMO Extensions .......... ..................................... 4

I 1.6 Brief Summary and Relation to Other Approaches.................... 5

1.6.1 Ellipsoid Parameter Bounds .................................... 5

51.6.2 Stochastic Embedding ...................................... 5

1.6.3 Model Order Reduction ........ .............................. 5

1.6.4 Iterative Identification and Control Design ........................... 5

1.6.5 W,, Identification ............................................. 6

1 1.6.6 Set-Membership Validation ....... ............................ 6

2 Set-Membership Identification 7

U2.1 Problem Formulation ......... .................................... 7

2.2 Least-Squares Parameter Estimation ........ ........................... 8

3 2.2.1 Statistical Analysis ........................................ 8

2.2.2 HIigh-Order ARX Sets ....... ............................... 9

3 2.2.3 Robust Control with ARX Sets...............................Lu

2.2.4 Order Reduction via Laguerre Expansions .......................... 11

2.3 Ellipsoid Set-Membership Identification ........ ......................... 12

2.3.1 Uncertain Non-parametric Dynamics .............................. 12

2.3.2 Robust Control Design of Ellipsoid Sets ........................... 13

2.3.3 Comparison with Stochastic Emb•,_'ling ........................... 15

2. £- Id&ntification.. ................................................. 15

Ui



I
I

3 The Future: A Graphical User Interface for System Identification 19

A Preprints of Papers 29 1
A.1 On the character of uncertainty for system identification and robust control design . 31

A.2 Set-membership identification of systems with parametric and non-parametric un- 3
certainty .......... ........................................... 35

A.3 Robust control design for ellipsoidal plant set ....... ...................... 49 3
A.4 A robust control design for FIR plants with parameter set uncertainty ........ ... 55

A.5 Statistical analysis of least-squares identification for robust control design: output
error case with affine parametrization ........ .......................... 61

A.6 Worst-case control design from batch-least-squares identification ........... .... 67

A.7 Identification for Robust Control Design ....... ......................... 73 1
A.8 A family of norms for system identification problems ........................ 79

A.9 On adaptive robust control and control-relevant system identification ......... ... 89 3
A.1O Adaptive robust control: on-line learning ................................ 97 I

I
I
I
I
I
I
I
I
I

ii I



I

* Forward

This report describes work performed trom I Sept. 89 through :31 March 93 under funding
from AFOSR, Directorate of Mathematical and Computer Sciences, Contract No. F-19620-89-C-
0119. The Principal Investigator was Dr. Robert L. Kosut, Manager of the Research Group at
Integrated Systems, Inc. Prof. Stephen Boyd from the Department of Electrical Engineering,
Stanford University was a Consultant. Ming Lau, while a Ph.D. candidate at Stanford under
the guidance of Prof. Gene Franklin and Prof. Boyd, contributed significantly to the research in
ellipsoid set estimation and robust control design. The work reported here on iterative control and
identification is the result of collaboration between Dr. Kosut and Prof. Briar D. 0. Anderson
from the Department of Systems Engineering, The Australian National University.U

I
I
I
I
U
U
U

I
I

I

II..



I Chapter 1

Introduction

1.1 Background and Motivation

Current approaches to robust control take for granted the availability of uncertainty descriptions,
e.g., parameters lying in fixed intervals (e.g., Barmish[5], Biernacki et al.[9]) or frequency domain

(7-H,,) bounds (e.g., Safonov et al.[60], Doyle et al.[16], Francis and Zames[22]). However, the
question remains as to how these descriptions might be obtained in practice. On the other hand,
the identification community has emphasized estimation of nominal models without developing an
associated estimate of model quality. When model error evaluation has been carried out, this usually
accounted only for random effects due to exogenous inputs rather than errors due to inherent model
limitations which necessitate a robust control design, e.g., Jenkins and Watts[31], Ljung[49] and
the references therein. There is now a greater recognition by both communities of the requirements
of the other. This recognition is evidenced by the strong interest shown by researchers from both

the identification and robust control communities, e.g., the recent Special Issue [35], and the many
sessions on this topic at recent conferences and workshops.

3 Despite this research activity, this subject is still in its infancy and many developments are likely
to arise from intensive research efforts devoted to the interaction between the previously separate
fields of identification and robust control. To fill the needs of robust control design will require a

new approach to system identification which provides both a nominal model and a measure of its
uncertainty. We refer to this approach as "set-membership identification" or "set estimation."

The long-range goal of this research is to form a new system identification paradigm that
fulfills all the requirements of robust control design. This will have a significant impact in the
engineering community where such an "engineering theory" is badly needed. Moreover, with the
wide availability and use of CACSD packages, such as MATRIXx research results will be rapidly
spread. Since system identification and robust control design are ubiquitous engineering activities.
the benefits of this research will be widely utilized, particularly among control engineers involved
with aircraft, spacecraft, robotics, and industrial automation.

This report documents our research efforts which concentrated almost exclusively on set-estimation.
Some effort was spent on the important next step of robust controller design using the estimated

model accuracy.

In the remainder of this chapter we provide an overview of the issues and a. brief summary of3 our results.

I
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1.2 Model Accuracy Estimation

As expounded by Ljung[49], identification consists of three essential ingredients. namely, (i) mea- 3
sured data, (ii) a candidate model set, and (iii) a criteria for selecting a candidate model using the
data. Moreover, all three should be selected based on the intended use of the identified model. The
problem is the model set which traditionally consists of a single parametric model. There is no
associated parametrization in the model set of a measure of uncertainty. Thus, the designer must

guess or have faith in the identified model when used for controller design. But this opposes all the
standing assumptions made in current robust control design mnc hods. These methods require a set I
of models, not a single model. For example, a model set can consist of a transfer function which
depends in a known way on uncertain parameters, or the set may be described as a nominal model

together with a frequency dependent "ball of uncertainty". I
The integration of control design and identification is not altogether a new issue. The most

familiar and appealing application is adaptive control where, as shown in figure 1.1, a model is
identified concurrently with the on-line optimization of the control law based on the model. This
leads to intricate nonlinear recursions which have not been fully understood to date. There are
global stabilization schemes which are not robust; there are local stability results applicable to the
steady-state, and hardly anything is known about the transient behavior of adaptive systems, e.g.,
Astr6m and Wittenmark(4], Anderson et al.[21.

A formulation where explicit control action is anticipated for the purpose of identification is 3
the so called "dual control" design, e.g., Feldbaum[19], Barshalom and Tse[6]. Due to the high
computational requirements associated with this method, implementation is only possible with

crude approximations which lead to similar problems as with the adaptive case.

The approach we have been pursuing, illustrated in figure 1.2, is a two step procedure, where
identification produces a nominal model along with an uncertainty profile. The control is then

designed to be robust with respect to the estimated model set. This results in an iterative solu-
tion where models and control are adapted to the changing experimental conditions. This differs
considerably from the classical adaptive control scheme (figure 1.1) where the estimator produces

a single model with no information about model accuracy. In the robust control design procedure
of the new approach (figure 1.2), the plant model is replaced by a model set which reflects the
accuracy with which the model has been estimated. 3

In the work described here, we formulate a model set and an identification criterion from which
set-membership identification that uses time-domain data and meets the requirements of robust
control design, naturally follows. Specifically, we have investigated the following topics: 3

1. high order least-squares set-estimation with ARX model sets.

2. robust control with uncertain ARX model sets.

3. ellipsoid sets with known nonparametric uncertainty. 3
4. robust control of ellipsoid sets.

5. £C identification. 3
Before we discuss the results of our efforts, there are some other relevant issues to clarify. Specifi-
cally, the character of uncertainty, computation, and MIMO systems. 3

2
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3 Figure 1.1: Traditional adaptive control system with parameter estimator.

1.3 On the Character of Uncertainty

The current debate amongst researchers involved with set-membership identification centers on the
nature of the set itself: is it probabilistic or deterministic/worst-case. Clearly both can be used to
quantify uncertainty in either disturbances and transfer functions. A probabilistic, or stochastic,

3 description of a disturbance is common practice and forms the basis for fl 2-filtering and control
design, i.e., optimal filtering and LQG control design. A power bounded set of disturbances and/or
a deterministic/worst-case description of transfer function uncertainty leads to R... methods of
control design, e.g., Doyle et al.[15]. These sets can be combined leading to mixed R-2/7"oo control
design, e.g., Khargonnekar and Rotea[33].

If we begin with a stochastic description of the exogenous inputs to a system, then the high-
order least-squares based identification methods described in section 2.2.2 lead naturally to the use
of a probabilistic set to describe the dynamic uncertainty, which is purely parametric. This result
immediately raises the question: what does a robust control mean in the context of probabilities?
We tend to think of a robust controller as providing an absolute guaranty against instability and/or
certain levels of performance degradation given a deterministic, or "hard " bound on plant uncer-
tainty. With a probabilistic description, or "soft" bound, we must decide if 99.99% is safe enough.
To turn the question the other way, the deterministic bounds necessitates guarding against the
worst-case. But conditions for the worst-case may be extreme, thereby leading to an overly con-
servative controller. But this brings us back to exactly the question of probabilities and outcomes,
and finally to a more fundamental question: is Nature neutral or conspiratorial?

Attempting an answer at this time may not be necessary, nor very fruitful. Our philosophy has
been more pragmatic. We will leave it be, and follow the consequences of different assumptions
by developing a theory of set-membership identification and corresponding (as necessary) "robust"
control design methods compatible with both probabilistic and deterministic plant sets. In this3 way we can explore without prejudice.

!3
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Figure 1.2: Adaptive control with set estimator.

1.4 Comp'uting the Estimate

The computational issue is very relevant to system identification. The great appeal of "least-
squares," and the principle reasons for its ubiquity, are because a unique minimum is always
obtained, and there are very efficient and reliable methods for computing the solution. The com-
putational methods typically involve square-root algorithms such as the QR transformation, SVD
algorithms, as well as lattice forms for very high model-orders. It is imperative that the calcula-
tions are done in this manner, for otherwise significant numerical errors will accrue, even for a small
number of parameters. There are other reasons as well for using a QR method, e.g., (1) high model
orders and large amounts of data are easily handled, (2) data from different experiments are readily I
combined without re-doing the entire estimation, and (3) prediction errors can be computed for
varying model orders directly from the QR transformation. These factors make it possible to easily
and rapidly generate extremely high order models from large amounts of data. A least squares
approach to set estimation will naturally benefit from all the existing computational theory and
software.

1.5 MIMO Extensions

All the methods discussed ha~ve their MIMO extensions. The arguments made for using high-order
ARX models of SISO systems apply equally well to MIMO systems. Similarly, the Toeplitz based
methods are also extensible to MIMO systems. So, in principal the methodologies should carry
forward. However, issues of parametrization can become very important becausc with too many
inputs and outputs, the number crunching can get out of hand. Unfortunately, extending the
parametric robustness tests to the multivariable case is not solved.

,I I



1.6 Brief Summary and Relation to Other Approaches

It is fair to say that many of the ideas discussed here for set-estimation have been influenced by
the efforts of other researchers as well as by our own previous success and failures. In what follows

we give a brief summary of some of the recent literature.I
1.6.1 Ellipsoid Parameter Bounds

I In our previous work on set-membership identification, we showed how to obtain a set of models
that are consistent with a given set of data and a given set of prior assumptions on the possible

nonparametric uncertainty and disturbances see section 2.3 for a brief discussion; more details are in
Kosut et aL436, 39, 47, 40] and the papers in the Appendix). it these papers the model parameters
are shown to lie in a set defined by a quadratic form, i.e., an ellipsoid or hyperboloid, depending on

the data A similar approach was used in Younce and Rohrs[70], Wahlberg and Ljung[65). Earlier
versions of this approach based on least-squares are in Kosut[40] and the related robust control of
ellipsoid bounded plants in Lau et a/.[45, 46, 441. In Wahlberg(651, Laguerre expansions were used3 to model the dominant system dynamics and ellipsoid bounds also obtained.

The difficulty with the above approaches is that in order to compute the ellipsoid bound, a hard
bound on the non-parametric dynamics is required, which unfortunately, is precisely the knowledge3 which may be diffiult to obtain. Another important point is that these methods are based on
sufficient conditions to satisfy the prior H-!,o bound, hence, the sets can be conservative. In the
recent work of Poola et aI.[57], both necessary and sufficient conditions are established, but these3 are used for model validation.

3 1.6.2 Stochastic Embedding

In Goodwin et al.[25, 26, 24] a stochastic embedding philosophy is adopted (see section 2.3.3 for

a brief description). It is assumed that both the unmodelled dynamics and noise are drawn from
a probabilistic set having certain tmplitude and smoothness properties. Tl,ese properties are then
estimated by maximum likelihood techniques resulting in what we have called here, a probabilistic
set-membership estimator. These ideas have motivated our method of using high-order least-squares

to estimate the set. The use of high-order least squares as diszussed here is also discussed in Kosut
and Anderson[371.U
1.6.3 Model Order Reduction

I The use of Laguerre expansions, as mentioned above, may prove very useful in our high-order

least-squares approach, because the orders can be significantly reduced prior trn LS estimation, c.g.,
I Wahlberg[66, 671.

I 1.6.4 Iterative Identification and Control Design

Several approaches have been put forward which involve iterating on closed-loop data while succes-3 sively adjusting data. filters for identification a,,d redesigning the controller. cg., Schrama.[511',lee

I
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et a,.[48], Zang et ai.[71], Hansen et aL.[29], Yam ct al.[69], Kosut[41]. The techni(Iues discuSssed
here for set-membership identification are a necessary part of these schemes.

1.6.5 R,,, Identification

Several researchers have considered the problem of identification using the H,, norm starting from 3
bounded error frequency response data at a finite set of frequencies, e.g., Parker and Bitmead[56],
Gu and Khargonnekar[32], telhnicki et a/.[30]. Both linear and nonlinear algorithms have been
developed and bounds on the worst-case identification error are also derived. Although there are I
some very interesting results contained in this work, we would rather start from time-domain data,
which really is the source of frequency donmain data in the first place. The new methods of £oo
identification described in 2.4 and Massoumnia and Kosut[51] (see Appendix) may prove to be a I
more direct approach to this problem.

1.6.6 Set-Membership Validation

A related problem to set-membership identification is that of model set validation. In Smith and 3
Doyle[63, 62], the following model validation question is posed: "Given experimental data and a
model with both additive noise and norm bounded perturbations, is it possible that the model could
produce the observed input-output data?" This question is a first step towards the reconciliation 1
of prior assumptions on disturbance and model accuracy with observed data from a systerr. The
approach is based on frequency domain data with a p-like model strvt'ture.

In Poola et al.[571, the model validation problem is posed using time-domain data and both
necessary and sufficient conditions are obtained for model validation, and hence, invalidation. Our
previous work on set-membership identification used only the sufficient conditions to produce the
ellipsoidal sets. The underlying theory in Poola et al.457], which provides both the necessary and I
sufficient conditions for consistency, is based on certain Toeplitz forms. There are somne similarities
with the Toeplitz forms used the new £f, identification methods uiscussed in section 2.4. 3

U
I
U
I
I
I
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Chapter 2

Set-Membership Identification

In this section .ae give an overview of the fundamental problem of set estimation and a detailed
summary of our own contributions. The complete details of our work is contained in several papers
which are included in this report as an Appendix.

2.1 Problem Formulation

To illustrate the issues, suppose that the true, but unknown system to be controlled is the single-
input-single-output stable dis.crcte-time system,

S: {y = Gu+ Ile I e E E(A)} (2.1)

where G and H are unknown causal linear-time-invariant (LTI) systems ",th transfer functions
G(z) and H(z), respectively. The sequences y and u are, respectively, the sensed output, and the
applied control inpit. The sequence e is unpredictable except known to be in a set E(,\) where X
is unknown. Likely candidates for E(A) are Ep,,,(A), the set of sequences with power bound A, or
Eiid(A), iid zero-mean sequences with variance A. For robust control design, it is necessary to have
a set description of the plant system. For example, consider the set 1

M: {y = (d+ tfW)u He IIAIKj • j, eE

If E(A) = Epo0 (A), then M is typical for 7o?4 control design. If E(A) = Eiid(A), then mixed "2 /H-o
control design methods apply. There are many combinations possible. However, in all the above
cases, the quantities with "hats" are available a priori to the designer. The problem addressed
here, referred to as set estimation, is to determine these quantities a posteriori from the finite data
record, 3{yt,UIt I t N}

where yt and ut are the values of the sequences y and u, respectively, at time t. In the remainder
of this section, some of the issues involved in set estimation are discussed and some promising

methods recently proposed are reviewed. More details on these specific techniques can be found in

the special issue 135] and the i-eferences therein.

3if A is itable, sIup = sii, IA(e-)J, otherwise, lIAi,
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2.2 Least-Squares Parameter Estimation

Least-squares (LS) methods of parameter estimation enjoy a very wide usage, and the underlying 3
theory is well developed, especially in a probabilistic framework. In section 2.2.2 we show that
the LS estimator together with high-order ARX models lead naturally to transfer function uncer-
tainty which is parametric. Moreover, the parameter uncertainty can be either probabilistic or I
deterministic, depending on prior assumptions.

Parametric uncertainty has proven much more difficult for robust control design than the non-
parametric dynamic uncertainty associated with 7-R, methods. However, as discussed here, the
parametric uncertainty set produced by high-order least-squares seems to be quite tractable and
leads to some new approaches to robust control design (section 2.2.3).

The high-order ARX model sets, although compatible with the assumptions in the LS theory,
can be viewed as an intermediate step to encoding the data into a model more suitable for robust
control design. To reduce the model order, we have examined the use of Laguerre expansions
(section 2.2.4) before LS is applied. The selection of the Laguerre kernels may have to be based on
a priori information, or depend on a desired closed-loop bandwidth. g
2.2.1 Statistical Analysis

Parameter estimation via least-squares with an ARX model is perhaps the most widely used ap-

proach to system identification. Consider the parametric ARX model set:

M :{Aoy = Bou + e 10 E IRp, e E Ej,j(A)} (2.2) 1
where 3

A0 = 1 + -aiz-, Bo = Ebiz-i
i=1 i=1

0 [a,'... a,, blI ... bmIT ]T

Thus,

y, = TO + et

OkT = ...i Yt-n Ut-I.. Ut-rn)

The least-squares parameter estimate, based on a finite data record, is found from:

9 arg m•n Y k (yt - OT¢i)2 (2.3) -
t=I

It is well known (Ljung[49]) that I
0 -- 0', as N -- 00, w.p. 1

where
* =arg min . c•r(w,O)dw

8 7



with the "error" spectiumi given by,

Se,(W,9) = IAo(c.W),(;(w). Be(cJw)iŽS,,(w)

+ AIAe(cJw)n(diw)1
2

In addition, if the system (2.1) is in the ARX model set (2.2), then the parameter error 9 - 9 is
asymptotically normally distributed, i.e., as N - oo,

vW(O - 0-) -, .(O,Ag(+,•T)-') (2.4)

where E(-) denotes expectation. Observe that the system (2.1) is in the ARX model set if there
exists a parameter 0o such that, G = Be, /Ao0 and H = 1/Aoo. Although this is not true in general,
the true system can be arbitrarily well approximated by a high order ARX model. Specifically,
set n = m. Then, there is a sufficiently large value of n and a corresponding parameter 0o E JR2,

such that IIH-,G - Ba001H and JIH- 1 - A9oll,. are arbitrarily small. Hence, for some sufficiently
large values of N and n, reasonable estimates of E(.OtO7T) and A, are

NN

T _2

1 ~ N - 2n t

with

Ft = y, -tT

the estimated prediction error. The above asymptotic approximations inspire several types of
high-order ARX set estimators.

2.2.2 High-Order ARX Sets

3 Let G = B/A and H = 1/A denote LS/ARX estimates of G and II. Let m = n where n is large.
Then, the true system is well approximated by,

3Y =y j)U _ bTk/20 + e (2.5)

where 6 E IR2, is the normalized (unknown) parameter error:

3 6 = -012(W _) (2.6)

3 Since e E Eiid(A), for large N, we have the following approximate statistical properties:

b E AF(0, 1I2.), (N - 2n) E •2•(N - 2n)

Therefore,
N N 6 T"6
- E x,2(p), 2n F(2n, N - 2n)

where F(2n, N - 2n) is the F-distribution with degrees of freedom 2n and N - 2n. Ifence,

Prob{6Tb < - = 2

can be determined from an F-distribution table. To be safe, suppose we set ql very high, say,3 = .999. Then for typical numbers such as N > 1000 and n = 10, we get, a = 2.27. For large n.

9)
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say n = 60, and large N > n, we get a - 1.45, and so on. In addition, for large N, e E E(A).
Hence, for large n and large N, the system (2.1) is in the model set

AV = fju jfT -1/2 0f + eU
Marx: bTb < 2 VA (2.7)

e E Ej4(A) 3
with probability of at least 17.

It is interesting to compare the above probabilistic result with a strictly deterministic view. For 3
example, the orthogonality properties of the least-squares estimator give:

-T eN - (N - 2n)A
t=1

This property requires no probabilistic assumptions on the data. Hence, 3
T ~e, - -j= T N(i7 - A) + 2nANt=1

The estimate A is a possible choice for ,7 which gives a result very similar to that above.

2.2.3 Robust Control with ARX Sets

In this section we discuss the issue of robust control design under the assumption that the true 3
system is in the ARX model set Marx of (2.7). Suppose we apply the LTI feedback controller

u = -Ky (2.8)

where K' stabilizes the "nominal" ARX system (b = 0),

Ay = Bhu + e 3
Applying the control to the actual system model (2.5), gives the closed-loop system

u Qse Th[ Qe

where I
S1 O- K'

T + i' I+A I

Because K%. stabilizes the nominal system, T, Q and h are all stable. 3
Recall from the Nyquist theorem that since 4 is stable, the closed-loop system is stable if and

only if, - ) 0,V6 < p',w 3

10 3



This is equivalent to

P < Pstab3 where Pstab, the so-called "real" stability margin is given by,
2 = i = T '(W) j 6"h(eJw) = -l }

P istab ==ififrw

Calculating r(w) involves finding the minimum norm (least-squares) solution to the over-determined
set of equations bTh(eJw) = 1 at each frequency. Thus,

= I1/[11a112 - (aT b)2/ 11b112], b X o

where 
11a1l2, 

b = 0

a=Re h(e-), b = Im h(ejw)

I Hence, a "probability of stability" can be stated as follows. If

Prob{6Tb < p2 } = 17

then

P < Pstab * Prob{(1 - ,Th)- 1 stable} > 77

It ought to be mentioned that no closed form solution is known for the stability margin, Pstab, in
the MIMO case.

2.2.4 Order Reduction via Laguerre Expansions

3 Although high-order ARX model set estimation seems promising, there are some obvious impedi-
ments. First, the controller (2.8) will also be of high order. Secondly, a determination of what is
meant precisely by high order is dependent on a priori knowledge about the true system. Thirdly,
the statistical properties are based on very large data lengths, and again, a precise value depends
on the true system properties.

To offset the high order, an alternative is to use a more parsimonious model parametrization.

For example, using Laguerre expansions, as proposed in Wahlberg and Ljung[65], may result in
considerably fewer parameters to obtain the same level of approximation as a model expanded
in the backward shift operator z- 1 . However, the efficacy of this approach depends on prior

information regarding the accuracy of some dominant pole locations. The basis for the Laguerre
expansions is the fact that for any stable transfer function T(z), and any a E (-1, 1), there is a3 unique bounded real sequence a, such that

00

T(z) = _akLk(z,a)3 k=1

where3Lk(z, a) az k-

Observe that for a = 0, Lk(z,0) = z -, which returns the usual expansion in the delay z-'. The3 aappropriate order of the expansion depends on the convergence properties of the partial sums. For
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example, 2 has a Laguerre expansion of order n = 1, provided that a = p. Since typically, p
is not known, a good choice of i will depend on prior knowledge of p. For ARX model,, replace

1-1 and If'G in the shift operator with Laguerre expansions. To pick a good Laguerre kernel U
requires either prior knowledge or else some data dependent means of selection. Another possibility
is to select the kernel to reflect the desired closed-loop bandwidth.

An affine model set, e.g., a Laguerre expansion for G, can also offset the issue of determining U
what is meant !y a large data length. With this model, it is possible to precisely compute statistical

properties without the need for either large model orders or large data lengths, e.g., Kosut and

Anderson[34]. However, another useful asymptotic property, also true for ARX models, is that if I
the input is white, then the first m, impulse response coefficients of G are asymptotically unbiased,
where m is the order of Bo. Other useful results follow from this fact, e.g., Aling and Kosut [1]. 3

2.3 Ellipsoid Set-Membership Identification

2.3.1 Uncertain Non-parametric Dynamics 3
When an upper bound on the nonparametric model errors is known from prior knowledge, it is
possible to compute a parameter set which is consistent with the data. Depending on the data, the

parameter set is either an ellipsoid or an hyperboloid. In the latter case the data is considered to be
"bad", that is, the spectral content of the data is concentrated too heavily at those frequencies where

the nonparametric dynamics dominate. Thus, an ellipsoid indicates "good" data and there are

several schemes for minimizing the size of these ellipsoids. Computation of the bounding ellipsoids
is virtually no different than standard least-squares computations and can be accomplished in a

batch or recursively. We plan to investigate efficient methods in our future work. Various kinds

of prior information can also be included using the bounding ellipsoid approach. Some of these 3
computational problems are generic, not specifically for robust control and identification, and are

surveyed by Deller[141. 3
To see the main result more clearly, we can state the problem as follows: Use the measured

input/output data

{ yt, ut t= 1,...,N } (2.9)

to obtain a model set suitable for robust control design. To do this we need to make some as-

sumptions. The first is that the system which produces the data is disturbance-free and linear time I
invariant. Thus,

y = Gu (2.10) 3
where G has the (discrete-time) transfer function G(z). Assume also that the true system is a

member of the model set

G= { Co(l + AGWG) : 9 E Opi,,,lol, I lA1 _ 1 } (2.11)

Thus, the model set consists of parametrized models with a multiplicative nonparametric error
bounded by WG(z). The set Oprior represents the prior information by which the parameter vector
is confined. We further characterize the parametric transfer function by using the standard ARX

12



I form in Ljung[49]:

Go(z) = Bo(z)/Ao(z)3 Bo(z) = b1z- 1 + ... + bz-" (2.12)

Ao(z) = 1 + az- 1 + ... + a1,z"

I = (a, ... a, ...

The result in Kosut et al.[39] which forms the basis for the parameter set-membership estimation,

3 is the following

Theorem 2.3.1 Under the assumptions stated above, all parameters which are consistent with the3 measured data and the prior information are in the set

Oprior n Owe

I where the "worst case equation error set" O,, is defined by

IOw = { E IRP : IlAoy - Bou1lN !5 IIBoWcuIlN }

(IIXIIN = (F=N xTzt) 112 is the usual C2-norm on t E [1, NI.) The motivation for the term "worst

case" refers to the fact that the nonparametric uncertainty AG will take on the worst possible value

such that IIAGI17mll _ 1. The set can be easily computed using least-squares methods and may be
a hyperboloid, ellipsoid or the empty set depending on the data (see Kosut et a1.t391). Thus, the

true system is guaranteed to be in the set:

G G= (I + AGWG) : 0 E Oprior, nOt0c, IIAG1I11 < 1 } (2.13)

Instead of multiplicative model errors, we have also considered additive model error sets, i.e.,

3 = { Go + AgWG : 0 E Op,,ior, IIAGJILK 0 ! 1 } (2.14)

The resultant parameter set is then given by

Oc = { 0 E 1W : IlAoy - BOuliN < IIAoWGuIIN I

3 Several other model error formulations can be used, e.g., inverse multiplicative, feedback and

coprime factored. We will not discuss them here, but merely state them to indicate that this is a

versatile approach which allows various kinds of prior information. More specific details and results

Susing the set-membership approach are described in Kosut et al.[36], a copy of which is contained

in this report as an Appendix.

1 2.3.2 Robust Control Design of Ellipsoid Sets

As a first step in using the ellipsoidal parameter set information, we simplified the robust control

design problem to the case of FIR plants in an ellipsoidal set. Details can be found in Lau et

al.(45, 461 which describe the continuous-time and discrete-time cases, respectively. Copies of these3 papers are contained in the Appendix.

13
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We started with the simplifying assumption that the plant state-space description depended on
uncertain parameters in the output matrix which are only known to lie in an ellipsoidal set. The
desired control is chosen to minimize the maximum linear quadratic regulator (LQR) cost from all I
plants with parameters in the given set. Although no a prior form is assumed for the minimax
control, it turns out that it is the LQR control for one of the plants in the set, the u'orst-cas-,
plant. By defining an appropriate operator mapping an element from the given ellipsoidal set to
an element of the same set, the existence of this worst-case plant is proved. A simple algorithm is
used to compute the worst-case plant.

The assumption that the output matrix in the plant description contains all the uncertainty
deserves further discussion. First, this is a natural extension of the discrete FIR finite-horizon
problem solved in Lau et al.146]. In the continuous case, Laguerre models can be used so that the
identification is reduced to estimating the Laguerre coefficients (see Wahlberg[64]). Uncertainty in
the Laguerre coefficients can then be described by set membership of the output matrix. Second,
by limiting uncertain parameters to the output matrix, we simplify the analysis and can gain more
insights than if we had included parameter uncertainty in the plant dynamics also.

Specifically, we consider the following family of systems

.(t) = Az(t) + bu(t), x(0) = (2.15)
y(t) = cTx(t), (2.16)

where A, b, and x0 are fixed and given, and

c E 0= f0 {O:(0-Oc)TR(O-Oc)< 1, R= RT >0}. (2.17)

For a given control u: -. R+ - 1R and a fixed c E 0, the LQR cost is defined to be/5
J(u, c) = [ru(t) + y(t)21 dt. (2.18)

We assume that (A, b) is controllable (or at least stabiliziable) and (c, A) is observable (or at least
detectable) for all c in 0. The robust control design problem is to find a control u that solves the
following minimax problem: m

m mJ (2.19)

Since no a prior form is assumed for the control u, such as linear state-feedback, the minimization
in (2.19) is over all possible u : JR+ -* IR. Note also that we chose the initial time t = 0 for
convenience only, the problem can be posed at any initial time t = to. Therefore, one can design a
new controller each time 0 gets updated.

The cost objective in (2.18) and the ellipsoidal set in (2.17) lead to another interesting inter-
pretation for the minimax problem in (2.19) once we rewrite (2.18) as

J(u, c) = [ru(t)2 + xT(t)ccTx(t)] dt. (2.20)

Now, instead of saying that we are designing a controller for a set of plants described by (2.15)
through (2.17), we can also say that we are designing a controller for a set of objective functions.
This interpretation contrasts with the standard LQR design where one controller is obtained for
the selected weighting matrices. Therefore, the minimax control from (2.19) is less sensitive to
how the states are penalized in the cost. This kind of control design method should be applicable
to many practical situations as we seldom know exactly how much one state should be weighted
against another.
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2.3.3 Comparison with Stochastic Embedding

In the work of Goodwin et al.[24, 25, 261 a stochastic embedding philosophy is adopted which makes
no assumptions on model order or data length. It is assumed that both the tInfiodelled dynamics
and noise are drawn from a probabilistic set having certain amplitude and smoothness properties.
These properties are then estimated by maximum likelihood techniques resulting in a set estimator.

Since all the trouble is related to that part of the system which is not modeled, i.e., the "bias," it
makes no sense to try to estimate the bias in the form of a parametrized model. That is tantamount3 to an additive high order plant model component which should have been incorporated in the plant
model in the first place, e.g., high-order ARX model sets.

To see the main idea, assume that the true system is described by (2.1), and an estimate G- of
G has been obtained from

0"= argmin (y- Gou)t

Since the model structure is incompatible with the true system, Gi will be a biased estimate of G.
We now make the assumption that the true system is the sum of a model in the model set and a3 bias term which has an expectation value of zero:

G(z) = G 9 0(z) + A(z) with E{fA(z)} = 0

U tHere, the expectation is not taken over the data probability space, but over the unknown bias model
set. In other words, the complicated problem of relating the bias to the data and the mismatch
in structure of the true system and the model is avoided by simply assuming that the bias model
is a zero-mean random variable. By modeling the bias in this rudimentary form, a bias model set
parametrization is obtained which is described by a small number of parameters, yet is capable of
representing a large set of error models.

As an example, assume that the expectation of the squared bias model impulse response is
exponentially decaying:

U L~~~~(z) = Z/liz- { 2  =cp

t=1

where 0 < p < 1. Thus, the bias model set is describei by only two parameters a• and p. With
some additional assumptions, e.g., gaussianity and Go an affine Laguerre expansion, an explicit
formula of the Fisher information matrix can be derived which forms the basis for an optimization
procedure. Hence, the two parameters which describe the general shape and size of the less certain
part of the system model can be directly estimated from the data.

U 2.4 L,, Identification

In this section, a new criterion for system identification is introduced, which we loosely call C,,-
identification. At the present time, very little is known about this approach, and hence, we can
only guess about the consequences for set-membership identification and the corresponding robust
controller design. However, like LS, this approach also leads to solving a convex optimization prob-
lem. Unlike LS, it does not appear at this time that the solution can be expressed in closed-form.
However, the criterion is a convex function, so therefore, numerical methods will reliably compute3 the solution, specifically, interior point methods. In the future we hope to further understand
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tile properties of this estimator and develop reliable computational methods. Hopefully, this new
methodology will result in more natural set estimators suitable for robust control design. U

The parametric approach to system identification is based on selecting an appropriate model
structure and a search for the parameters of the model that best describes the data. Usually, the
best model within tile model set is characterized as the one that minimizes a selected norm of the
prediction errors, usually the 2-norm. In this section a new norm is introduced. Minimizing this U
norm is equivalent, asymptotically, to minimizing the supremum of the spectrum of the prediction
error over all frequencies, or equivalently minimizing its £C norm.

Given a scalar finite sequence {ei, i = 1,..., N} which represents the prediction errors computed m
from the observed data and a guessed model parameter vector 0. Based on this sequence, form the
(N + M -1) x M matrix, 3

el 0 ... 0
e2  ei ... 0

1 et eMf.. elC
ENM- . (2.21)m

eN eN- • eN-M+I

0 eN *.. • N-M+2 U
0 0 ... e3

with 1 < M < N. Note that ENM is constant along the diagonals, and for M 1, EN1 is a
column vector with ei/vK-N as its elements. Denote this vector by EN. Hence, the matrix ENM is
completely specified when EN(= ENO) is given. 3

Define the new norm as the maximum eigenvalue of ETENM,

,T -2

VM(EN) = (AENAM) = '2 (ENA) (2.22)

where A(F) denotes the maximum eigenvalue of F and a(F) denotes the maximum singular value

of F. Note that for M = 1, VM(EN) is the usual quadratic norm. i.From Grenander and Szego[28], I
we obtain the following limiting properties:

lim EN EN = 1iSee(W)dw (2.23)N--00o 27r"

lira ( lirn F2(ENM)) = sup See(W) (2.24)Mt--oo N-- oo IWl< ý •

lira (lim cr2(ENAf)) = inf See(w) (2.25)
M-0.o N-0o Iwl<w

where we assume that N goes to infinity faster than M.

Relation (2.24) is very illuminating and shows that by minimizing VM as M approaches infinity,
the supremum of the spectrum of the prediction error over all frequencies is minimized. Because of
this property, we referred to the identification problem using the new norm as the Ce, identification

problem. In contrast, by minimizing the usual quadratic norm, the integral of the spectrum of
prediction error over all frequencies is minimized (see Ljung[49]), and this can be referred to as

16



I -, identification problem. It seems plausible, that this norm is potentially very useful for robust
control design. More details can be found in Massoumnia and Kosut[51] which is included in the3 Appendix.
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Chapter 3

The Future: A Graphical User
I Interface for System Identification

A long range objective of the present work is the development of some mathematical and compu-
tational tools that are appropriate to the next generation of CACSD (Computer Aided Control
System Design) environments. These future CACSD packages will be radically different from the
present packages in that they will truly be able to perform control systems synthesis and rapid

Sprototyping. rather than just analysis and simulation.

In our view of the future, the engineer will commence the design with uncertain and/or in-
complete ;nformation consisting partly of prior knowledge, measured data, and a set of closed-loop
design objectives and constraints. Once this information is fed into the CACSD program, it will in
turn generate controllers that meet the performance requirements while respecting the constraints,
or else inform the engineer that the constraints cannot all be satisfied, suggest some trade-offs
as well as alternative experiments to obtain data which-may reduce uncertainty. As the engineer
thinks of more constraints and requirements, and/or obtains more data, these are entered into the
computer and are accounted for as they are entered. Thus, the CAkCSD process is still interactive,
but the level of interaction with the computer is much higher than it is at present. Moreover, the
interactive use of real data would be much more possible than at present.

3 In order for this ideal situation to come about, it is necessary first to solve some important math-
ematical and computational problems residing in the interface between controller implementation
on the actual system and controller design based on a model of the system.

I System identification is a typical example of an iterative inter-active orocedure where several
results have to be computed, analyzed and re-iterated again with modified design parameters. In
order to do this, the user repeatedly has to enter a sequence of commands for computing frequency
responses, spectral density functions and prediction error norms. Even in high-level interactive
CACSD programs like MATRIXx and MATLAB it is virtually impossible to execute this procedure
without having to write command files for each specific task. Figure 3.1 shows typical paths and
functions in the MATRIXx system identification environment. Instead of concentrating on the
design task, the user is mainly occupied with designing, organizing and maintaining a large number
of specific programs for standard procedures. As a conclusion, the current CACSD software is
inadequate for most users, both in the sense of user-friendliness and software design capabilities.

As an example, at Integrated Systems Inc. ([SI), we have recently introduced the XMATIII
I 9I
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Figure 3.1: MATRIXx System Identification command overview

product, which provides an ideal platform for the development of portable window-based CACSD 3
software such as system identification and control design. The important difference with the current
interactive CACSD programs in terms of user interface is that XMATH incorporates an interactive
X-windows based GUI development tool. This makes it possible to efficiently design interactive
mouse-driven application software where the interaction takes place through one or more specially
suited windows for each of these tasks. Such windows display all relevant parameters, as well as

graphical output like frequency response plots and bar graphs of error norms as a function of model
order. Standard validation and identification options are activated by a pulldown menu with on-line
help, and all displayed parameters are open to be changed for quick recomputation of the results. 3

As an example, consider the window displayed in Figure 3.2 which was written in XMATH/GUI
and which is intended for interactive system identification. This tool allows the user to iduatify all

ARX models up to a certain order, view their frequency response and confidence intervals, and vary I
the data window (gray area in the data plot area) and model order (gray bar in the two upper right
error norm plots) using the mouse only. In the lower left area, all important model parameters are

displayed and various options can be accessed by activating a pulldown menu from the top menu I
bar.

Clearly the XMATII-CUI can be used for the development of an interactive object oriented
environment which is sensible for a wide variety of users in the field of system identification and

control system design. This not only relieves the user of the burden of commaz.2 , but also
makes the design procedure completely self-explanatory. 3

2
20!



I6 .1

IS L L

04.

Kiddli idxa6-Vldain :o-7

Load deta tvs uariable : San mode as vritle

Figure 3.2: An exaniple XMATII/GLII window

21



U
I
U
U
3
I
I
U
I
I
U
U
U
I
U
U
I
I

22 U



* Bibliography

[1] H. Aling and R.L. Kosut, "Unbiased least-squares estimates with structure incompatibilitios,"
Proc. 1993 ECC, Groningen, The Netherlands, 29 June-2July, 1993.

[2] B. D. 0. Anderson, R. R. Bitmead, C. R. Johnson, Jr., P. V. Kokotovic, R. L. Kosut, I. M. Y.
Mareels, L. Praly, and B. D. Riedle, Stability of Adaptive Systems: Passivity and Averaging
Analysis, MIT Press, Cambridge, MA, 1986.

[3] B.D.O. Anderson and R.L. Kosut, "Adaptive robust control: on-line learning", Proc. 1991
CDC, Brighton, UK, Dec. 1991.

[41 K.J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley, 1989.

[51 B. R. Barmish, "New tools for robustness analysis, " Proc. 27th IEEE CDC, Austin, TX, Dec.
1988.

[6] Y. Bar-Shalom, E.Tse "Caution, probing, and the value of information in the control of un-
certain systems", Annals of Economic and Social Measurement, 5/3, pp. 323-337, 1976.

U [71 G. Belforte, B. Bona, and V. Cerone, "Parameter-estimation algorithms for set-membership
description of uncertainty, " Automatica, vol. 26, no. 5, pp. 887-898, 1990.

3 [8] D. P. Bertsekas and I. B. Rhodes,qtRecursive state-estimation for a set-membership description
of uncertainties, IEEE Trans. Automat. Contr., vol AC-16, pp.117-128, April 1971.

39] R. Biernacki, H. Hwang, and S. P. Bhattacharya, "Robust stability with structured real pa-
rameter perturbations, " IEEE Trans. Aut. Contr., vol. AC-32, pp. 495-506, June 1987.

[10] S. Boyd and L.E. Ghaoui, "Methods of centers for minimizing generalized eigenvalues," ISL
I Tech. Report, April 23,1992.

3 [11] S. Boyd and C, Barratt, Linear Controller Design: Limits of Performance, Prentice-Hall, 1991.

[12] S. Boyd et a!. (1986), "A New CAD Method and Associated Architectures for Linear Con-
trollers ", IEEE Trans. Aut. Control, AC-33(3):268-283, March 1988.

113] H. Cramer, Mathematical Methods of Statistics, Princeton University Press, 1946.

[14] J. It. Deller, "Set membership identification in digital signal processing," IEEE ASSP Maga-
zine, vol. 6, no. 4, Oct. 1989.

3 [15] J.C. Doyle, B.A. Francis, and A.R. Tannenbaum, Feedback Control Theory, Macmillan, 1992.

23!



U

[16] J. C. Doyle, J. E. Wall, and G. Stein, "Performance and robustness analysis for structured
uncertainties, " Proc. IEEE CDC, pp. 229-238, 1982.

[17] L. El Ghaoui, Robustness of Linear Systems to Parameter Variations, Stanford University
Ph.D. Thesis, Dept. of Aeronautics and Astronautics, March, 1990.

[18] L. El Ghaoui and S. Boyd, "Robustness of Linear Syrtems to Real Parametric Perturbations", I
Proc. 1990 CDC, pp.1247-1248, Dec. 1990, Honolulu, Hawaii

[19] A. A. Fel'dbaum, Optimal Control Systems, Academic Press, 1965.

[20] E. Fogel, "System identification via membership set constraints with energy constrained noise,
" IEEE Trans. Automat. Contr., vol. AC-24, no.5, pp.752-758, Oct. 1979. 3

[21] E. Fogel and Y. F. Huang, "On the value of information in system identification: bounded
noise case, " Automatica, vol. 18, pp.229-238, 1982.

[22] B. A. Francis and G. Zames, "On 7X,,-optimal sensitivity theory for SISO feedback systems,
" IEEE Trans. Aut. Contr., vol. AC-29, pp. 9-16, 1984.

[23] M. Gevers and L. Ljung, "Optimal experiment design with respect to the intended model
application, " Automatica, vol. 22, pp.543-554, 1986.

[24] G.C. Goodwin, M. Gevers, and B. Ninness, "Quantifying the error in estimated transfer func-
tions with applications to model order selection," IEEE Trans. on Automatic Control, vol. 37,
no.7, pp. 913-928, July 1992.

[251 G. C. Goodwin and M. E. Salagado, "Quantification of uncertainty in estimation using an
embedding principle ", Proc. 1989 ACC, pp. 1416-1421 Pittsburg, PA, June 1989.

126] G. C. Goodwin and M. E. Salgado, "A stochastic embedding approach for quantifying un-
certainty in the estimation of restricted complexity models," Int. J. of Adaptive Control and
Signal Processing, vol. 3, pp. 333-356, 1989.

[27] G.C. Goodwin and R.L. Payne, Dynamic System Identification: Experiment Design and Data
Analysis, Academic Press, 1977.

(28] Ulf Grenander and Gabor Szego, Toeplitz Forms and Their Applications, Chelsea Pub. Co. 1st
Edition 1958, 2nd Edition 1984.

[291 F. Hansen, G. F. Franklin, and R. L. Kosut, "Closed-loop identification via the fractional
representation: experiment design, " Proc. 1989 ACC, Pittsburgh, PA, June 1989.

[30] A. J. tlelmicki, C. A. Jacobson, and C. N. Nett, "Control-oriented system identification: a
worst-case/deterministic approach in If,,, " to appear in the IEEE Transactions on Automatic
Control.

[31] G.M. Jenkins, D.G. Watts, Spectral Analysis and its Applications, Holden-Day, San Francisco.

[32] G. Gu and P. P. Khargonekar, "Linear and nonlinear algorithms for identification in R" with
error bounds," to appear, "Special Issue on Identification for Robust Control Design," IEEE
Trans. Aut. Contr., vol. 37, no. 7, July, 1992. A conference version is in Proc. 1991 American
Control Conference, Boston, MA, pp. 64-69.

24



[33] P.P. Khargonnekar and M.A. Rotea, "Mixed 7•2/)•oo control: a convex optimization ap-
proach", IEEE Trans. Aut. Contr., vol. 36, pp.824-837, 1991.

[34] R.L. Kosut and B.D.O. Anderson, "Statistical analysis of least-squares identification for robust
control design: output error case with affine parametrization," Proc. 1993 A CC, San Francisco,
CA, June 1993.

[351 R.L. Kosut, G.C. Goodwin, and M. Polis, Guest Editors, "Special Issue on System Identifica-
tion for Robust Control Design," IEEE Trans. Aut. Contr., vol. 37, no. 7, July, 1992.

[36] R. L. Kosut, M. Lau, and S. Boyd, "Set-membership identification of systems with parametric
and nonparametric uncertainty," to appear, "Special Issue on Identification for Robust Control
Design," IEEE Trans. Aut. Contr., vol. 37, no. 7, July, 1992.

[37] R.L. Kosut and H. Aling, "Worst-case control design from batch-least-squares identification",
to appear, Proc. 1992 ACC, Chicago, IL, June 1992.

[38] R. L. Kosut, "Identification of nonlinear uncertain systems for robust control design, " Yale
Workshop on Adaptive Systems, 1990.

[39] R. L. Knsut, M. Lau, and S. Boyd, "Identification of systems with parametric and nonpara-
metric uncertainty, " Proc. 1990 ACC, pp. 2412-2417, San Diego, CA, May 1990.

[40] R. L. Kosut, "Adaptive control via parameter set estimation", Int. Journal of Adapt. Contr.
and Sig. Proc.," vol. 2, pp. 371-399, 1988.

[41] R.L. Kosut (1986), "Adaptive Calibration: An Approach to Uncertainty Modeling and On-Line
Robust Control Design," Proc. 25th IEEE CDC, Athens, Greece, Dec. 1986.

[421 J.M. Krause and P.P.Khargonekar (1987), "On an identification problem arising in robust
adaptive control", Proc. 26th IEEE CDC, Los Angeles, CA, Dec. 1987.

[431 R. 0. LaMaire, L. Valavani, M. Athans, and G. Stein, "A frequency-domain estimator for use

in adaptive control systems," Proc. 1987 ACC, pp. 238-244, Minneapolis, MN, June 1987.

[44] M. Lau, Set-Membership Approach for System Identification and Control Design, Stanford
University Ph.D. Thesis, Dcpt. of Electrical Engineering, 1992.

[45] M. Lau, S. Boyd, R.L. Kosut, and G. Franklin, "Robust control design for ellipsoidal plant
set", Proc. 1991 CDC, Brighton, UK, Dec. 1991.

[46] M. Lau, S. Boyd, R.L. Kosut, and G. Franklin, "A robust control design for FIR plants with
parameter set uncertainty", Proc. 1991 ACC, Boston, MA, June 26-28, 1991.

[47] M. K. Lau, R. L. Kosut, and S. Boyd, "Parameter set estimation of systems with uncertain
nonparametric dynamics and disturbances, " Proc. 1990 CDC, pp. 3162-3167, Honolulu, HI,
Dec. 1990.

[481 W.S. Lee, B.D.O. Anderson, and R.L. Kiznt, "On adaptive robust control and control-relevant
system identification", Tech. Report, Dept. of Systems Engr., Australian National University,

1992.

[49] L. Ijung, System Identification: Theory for the User, Prentice-Hall, 1987.

25



U

[50] P. M. MiikiliL and J. R. Partington, " Robust approximation and identification in '",," Pro-
ceedings of the 1991 American Control Conference, pp. 70-76.

[511 M. Massoumnia and R.L. Kosut, "A family of norms for system identification problems," Proc. i
1993 ACC, San Francisco, CA, June 1993.

[521 M. Milanese and G. Belforte, "Estimation theory and uncertainty intervals evaluation in pres-
cnce of uiknown but bounded errors: linear families of models and estimators, " ,LL_ Trans.
Automat. Contr., vol. AC-27, no.2, pp. 408-414, April 1982. 1

[53] C. Moler (1980), MATLAB User's Guide, Tech. Report CS81-1, Dept. of Computer Science,
Univ. of New Mexico.

[54] Y. Nestorov and A. Nemirovsky, Optimization over positive semidefinite matrices: mathemati- i
cal background and user's manual, USSR Acad. Sci. Central Econ. & Math. Inst. 32 Krasikova
St., Moscow 117418 USSR, 1990. i

[55] J.P. Norton, An Introduction to Identification, Academic Press, 1986.

[56] P. J. Parker and R. R. Bitmead, "Adaptive frequency response identification," Proc. 28th 1
IEEE Conference on Decision and Control, pp. 348-353, 1987.

[57] K. Poola, P. Khargonnekar, A. Tikku, J. Krause, and K. Nagpal, "A time-domain approach i
to model validation", to appear, Proc. 1992 ACC, Chicago, IL, June 1992.

[58] D.E. Rivera, J.F. Pollard, L.E. Sterman, C.E. Garcia, "An industrial perspective on control-
relevant information", Proc. ACC 1990.

[59] R.J.P. Schrama, "Accurate identification for control: the necessity for an iterative scheme",
Tech. Report, Delft University. To appear, "Special.Issue on System Identification for Robust
Control Design," IEEE Trans. Aut. Contr., vol. 37, no. 7, July, 1992.

[601 M. G. Safonov, A. L. Laub, and G. L. Hartmann, "Feedback properties of multivariable sys- -
tems: the role and use of the return difference matrix, " IEEE Tran. Aut. Contr., vol. AC-26,
Feb. 1981.

[61] F. C. Schweppe, "Recursive state estimation: unknown but bounded errors and system inputs,
"IEEE Trans. Autom. Contr., vol AC-13, pp. 22-28, April 1968.

[621 R.S. Smith and J.C. Doyle, "Model validation - a connection between robust control and i
identification", to appear, "Special Issue on System Identification for Robust Control Design,"
IEEE Trans. Aut. Contr., vol. 37, no. 7, July, 1992. 3

[63] R.S. Smith and J.C. Doyle, "Model invalidation - a connection between robust control and
identification", Proc. 1989 ACC, pp.1435-1440, 1989.

[64] B. Wahlberg, "System identification using Laguerre models", IEEE Trans. Autom. Contr., vol
AC-36,no. 5, pp. 551-562, May 1991.

[65] B. Wahlberg and L.Ljung, "Hard frequency-domain model error bounds from least-squares like
identification techniques", Report S-581, Dept. Electrical Engineering, Nov 1990. An expanded
version is in JEEE Trans. At. Contr., vol. 37, no. 7, July, 1992.

26



i

I [66] B. Wahlberg, "System identification using high order models revisited", Report LITH-ISY-I-
0999, Link0ping Univ., 1989.

1 [671 B. Wahlberg, "On model reduction in system identification, " Proc. 1986 ACC, pp. 1260-1266,
Seattle, WA, June 1986.

[68] B. Wahlberg and L.Ljung (1986), "Design variables for bias distribution in transfer function
estimation", IEEE Trans. Aut. Control, vol AC-31, no 2, pp. 134-144. Feb. 1986.

[69] Y. Yam, D.S. Bayard, R.E. Scheid, Integrated identification and robust control tuning for large
space structures, JPL report, 1989.

[70] R. C. Younce and C. E. Rohrs, "Identification with non-parametric uncertainty, " Proc. 1990
CDC, pp. 3155-3161, Honolulu, HI, Dec. 1990.

[71] Z. Zang, R.R. Bitmead, and M. Gevers, "Iterative model refinement and control robustness
enhancement", Tech. Report, Dept. of Systems Engineering, ANU, Nov. 1991.

I
I
I
I
I
i
I
i
I
I
I

i 27



I
I
I
I
I
I
I
I
U
I
I
I
U
I
I
U
I
I

28 i



I Appendix A
I

Preprints of Papers

A selection of papers which have or will appear in both journals and conference proceedings is
included in this appendix.

I page 31 R.L. Kosut, "On the character of uncertainty for system identification and robust control
design", Workshop on the Modeling of Uncertain Systems, Springer-Verlag, to appear, Editor,
Roy Smith.

page 35 R.L. Kosut, M. Lau, and S. Boyd, "Set-membership identification of systems with para-
metric and non-parametric uncertainty", IEEE Trans. Automatic Control, Special Issue:
"System Identification for Control Design," Vol. 37, No. 7, pp. 929-941, July 1992.

page 49 M. Lau, S. Boyd, R.L. Kosut, and G. Franklin, "Robust control design for ellipsoidal
plant set", Proc. 1991 CDC, Brighton, UK, Dec. 1991.

page 55 M. Lau, S. Boyd, R.L. Kosut, and G. Franklin, "A robust control design for FIR plants
with parameter set uncertainty", Proc. 1991 ACC, Boston, MA, June 26-28, 1991.

page 61 R.L. Kosut and B.D.O. Anderson, "Statistical analysis of least-squares identification for
robust control design: output error case with affine parametrization," Proc. 1993 ACC, San
Francisco, CA, June 1993.

page 67 R.L. Kosut and H. Aling, "Worst-case control design from batch-least-squares identifica-
tion," Proc. 1932 ACC, Chicago, IL, June 1992.

page 73 R.L. Kosut, "System Identification for Robust Control Design," Proc. Sixth Yale Work-3 shop on Adaptive and Learning Systems, Yale University, New Haven, CT, Aug. 1990.

page 79 M. Massoumnia and R.L. Kosut, "A family of norms for system identification problems,"
Proc. 1993 ACC, San Francisco, CA, June 1993, to appear, IEEE Trans. Automatic Control.

I page 89 W.S. Lee, B.D.O. Anderson, R.L. Kosut, and I.M.Y. Mareels, "On adaptive robust control
and control-relevant system identification," Proc. 1992 ACC, Chicago, IL, June 1992.

I page 97 B.D.O. Anderson and R.L. Kosut, "Adaptive robust control: on-line learning", Proc.
1991 CDC, Brighton, UK, Dec. 1991.

I
29

I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



On the Character of Uncertainty for System
Identification and Robust Control Design *

Robert L. Kosutt

September 15, 1992

I
"It ain't the things you don't know what gets you in deep trouble. It's the things
you know for sure, but what ain't so." -Uncle Remus.

Nothing could more aptly describe the predicament when faced with the problem of
designing a controller from accumulated sensed input-output data. The identification, or
estimation, of a system's transfer function from input-output data has a long history and
there are many excellent survey articles and textbooks that can be referenced, e.g., [4], [81,
[71,[151, [14]. The problem with all the methods discussed in these references, insofar as robust
control design is concerned, is that model error estimates are usually not available, and if
available, cannot be trusted. The principal reason for this difficulty is that the identification
algorithms are developed under the false assumption that the true system is in the model
set. As a result, the model estimate, loosely speaking, is "biased", and hence, a controller
designed using the estimate may result in unacceptable closed-loop behavior, a phenomenon
which is well documented, e.g., [14, 3, 1). To paraphrase the above aphorism, "Trouble is
bound to follow if the identified model is known for sure to be the true system."

This situation is unfortunate, because all the standing assumptions made in current
robust control design methods require a model set description which typically consists of
a nominal model and an error estimate, usually a norm bound, where both together are
guaranteed to encompass the true system. To fulfill the needs of robust control design will
therefore require a new approach to system identification which provides both a nominal
model and a measure of its uncertainty. Such schemes have been referred to by various
names, e.g., set-membership identification, set-estimation, uncertainty modeling, as well as
other self-canceling phrases -- how does one model an uncertainty? This research topic has
received strong interest recently as evidenced by this workshop, the recent special issue [10],
and the many conference sessions planned at the next ACC and CDC.

*An essay for the NSF/AFOSR sponsered Workshop on "The Modeling of Uncertainty in Control Sys-

tems," University of California, Santa Barbara, June 18-20, 1992.
t Integrated Systems, Inc., 3260 Jay St., Santa Clara, CA, 95054 and Department of Electrical Engineering,
Stanford University, Stanford, CA.
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Formulating the Problem

"If what is said is not meant, then what ought to be done, remains undone."
- Confucious.

Sometimes solving a problem means finding a simple or direct statement of the problem
in the first place. In attempting to distill the problem formulation to its essence, perhaps it is
this: given a finite collection of sensed sampled input/output data from an unknown system,
what level of confidence can be assigned to a feedback controller design or modification? If,
other than the measured data, there is no additional knowledge about the system, then the
problem is solved: there is no safe controller. Anything can happen, because there is no
means for inferring the future from the past. Therefore, to make the problem meaningful,
it is necessary to make a priori assumptions about the system. These assumptions can I
be either qualitative or quantitative. For example, assuming that the unknown system is
linear-time-invariant is qualitative a priori knowledge. Knowing that it is stable can still
be classified as qualitative, but assigning a region for nole locations or knowing a bound on I
the impulse response is quantitative. A similar clasoitication can be made regarding signal
charateristics. Knowing that a signal is white is qualitative; but knowing a precise value for
the variance is quantitative.

Although a priori quantitative information may be readily available, e.g., from the un-
derlying physics, I think that it is first necessary to resolve the more pristine problem of Ispecifying a minimal amount of qualitative a priori data so as to assign a high degree of

confidence to a controller design.

Is Nature Good, Evil, or Indifferent?

The phrase "high degree of confidence" needs clarification. Do we mean worst-case or
high probability?

Current robust control formats are based on worst-case scenarios. Nature is perceived as
Evil, and hence, does the wrong thing, from our perspective. However, if this is not the case,
and Nature is at worst Indifferent or Neutral, then the problem should be posed in reverse: to I
fulfill the needs of system identification, long resting on a probabilistic (neutral) foundation,
may require a new approach to robust control which allows for a probabilistic description
of uncertainty! This latter possibility invokes the current debate on the intrinsic nature or
character of the uncertainty set. Is it probabilistic or worst-case deterministic? Clearly both
can be used to quantify uncertainty in either disturbances and transfer functions. However,
searching for the worst-case may be a hopeless task. If the worst-case has not yet occurred,
it might in the future, and hence, the search never ends. Fitting a probablistic model is
more sensible in this regard, but a 99.99% confidence level does not preclude the remaing 3
.01% from occurring.

A probabilistic, or stochastic, description of a disturbance is common practice and forms
the basis for 1H2-filtering and control design, i.e., optimal filtering and I,QG control design
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I
[2]. A power bounded set of disturbarces and/or a worst-case deterministic description of
transfer function uncertainty leads to 7/,, methods of control design, e.g., [5]. These sets
can be combined leading to mixed 7R2/H7-/o control design, e.g., [9]. The above examples by
no means exhaust the possible deterministic and probabilistic sets. For example, sequences
can be uncertain but have a bounded spectrum or a bounded magnitude. Transfer functions
can be uncertain but with (time) bounded impulse responses, and so on. The choice of
which uncertainty characterization to use depends upon prior kaowledge about the true

Ssystem. Clearly different assumptions ought to lead to set estimators with differing forms
and mixtures of probabilistic and/or worst-case deterministic uncertainty types.

As a case in point, if we begin with a stochastic description of the exogenous inputs
to a system, then the standard least-squares based identification method with a high-order
ARX model structure leads naturally to a purely parametric uncertainty which, depending
on further assumptions, is either probabilistic (normally distributed) or worst-case determin-
istic (ellipsoid bounded), e.g., [12, 11, 6]. To conform to current robust control paradigms,
the parametric characterization of uncertainty must be transformed to a non-parametric
worst-case deterministic frequency domain bound, a transformation that is not without a
considerable loss of information. Dealing directly with the worst-case deterministic (ellipsoid
bounded) parameter uncertainty leads to some new insights into robust control design e.g.,
[13]. For the probabilistic form of parameter uncertainty, it is my view that it would be
better to develop a compatible theory of "probabilistic" robust control.

Going in this direction, however, immediately raises the question: what does a robust
control mean in the context of probabilities? We tend to think of a robust controller as pro-
viding an absolute guaranty against instability and/or certain levels of performance degra-
dation given a deterministic, or "hard " bound on plant uncertainty. With a probabilistic
description, or "soft" bound, we must decide if 99.99% is safe enough. To turn the ques-
tion the other way, the deterministic bounds necessitates guarding against the worst-case,
which may be extreme, i.e., unlikely, thereby leading to an conservative controller. But this
brings us back to exactly the question of probabilities and outcomes, and finally to a more

* fundamental question: is Nature neutral or conspiratorial?

Towards a New Paradigm, or Paradigm Lost

Attempting an answer may not be necessary, nor very fruitful. I think that a better atti-5 tude at this point is to follow the consequences, without prejudice, of developing a theory of
set-membership identification and corresponding "robust" control design methods compati-
ble with probabilistic plant set descriptions. This to me seems the more sensible engineering
oriented character of uncertainty.

Hopefully, as a result of research efforts in many different directions, new paradigms
will arise which combine system identification and robust control design. With the wide
availability and use of CACSD packages, the benefits of this research could be widely utilized
ilu many engineering fields. Hence, it becomes imperative that. the resulting methodologies are
com,)releisilble and useful for the engineering coniiminty at large; not just understanalble
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to a few experts. The onus is on us!
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Abstract--A method is presented for parameter set estimation Estirmated P'arxmeters

where the system model is assumed to contain both parametric
and nonparametric uncertainty. In the disturbance-free case, the
parameter set estimate is guaranteed to contain the parameterset of the true plant. In the presence of stochastic disturbances,I Controller I Parameter [
the parameter set estimate obtained from finite data records is Dsign Eatire&tor

. hown to have the property that it contains the true-planti
parameter set with probability one as the data length tends to

infinity 
r- Plant

I. INTRODUCTION t

N the traditional adaptive control system, the identified /
model is used for on-line controller design without any Fig. I. Traditional adaptive control system with parameter -.stimator.

regard for errors between this model and the true system
which generated the data. The identified model is usually Model Set

selected out of a model set with unknown parameters as
depicted in Fig. 1. The controller is designed as if the
parameter estimates were in fact the correct parameters for Robust
describing the plant. This is known as applying the certainty Design Estimat, r
equivalence principle. In the ideal case, it is assumed that

there exist parameters, which if known, would precisely
account for the measured data. Even in this ideal case, the C Pln

transient errors between the identified model and the true Control

system can be so large as to completely disrupt the perfor-
mance. In the usual (nonideal) case, the true system is not in ___
the model set, therefore, both unacceptable transient or Fig. 2. Adaptive control with set estimator.
asymptotic behavior can occur, e.g., [1,.

Following the ancient Greek adage,' "Well begun, half
done," one ought to construct, at the outset, an adaptive model set can contain both parametric and nonparametrnc
control system which specifically accounts for the inevitable descriptions of uncertainty arrived at from both measured andmodel error, i.e., an adaptive robust control. Depicted in prior data.

We also replace the traditional controller design algorithmFig. 2 is our proposed scheme where the traditional parame- modelasetbformat.tBylreferring togarrobusticontroller wewith a robust controller design algorithm which accepts the
ter estimator is replaced with an estimator that produces a
model set. Thus, point estimation of a single model is mdlstfra.B eern oarbs otolrw
replaced with set-membership identification. The estimated mean a controller that achieves some specific set of specifica-tions for any plant model in the model set. The robust

Manuscript received December 15. 1990; revised November 15, 1991. controller design thus takes a set of models as input and
Paper recommended by Associate Editor at Large, M. P. Polis. The work ofR. L. Kosut was supported by AFOSR, Directorate of Mathematical and produces a controller that is guaranteed to meet the specifica-Information Sciences, under Contract F4%20-89-C-01 19. The work of M. tions for all models in this set. The robust controller design

K. Lau was supported by a doctoral study program at Sandia National can also report the worst-case performance with respect to
Laboratories. The work ,)f S. P. Boyd was supported by NSF under Grant the model set. It is also true that if the model set is too large,
ECS-85-52465 and from A&i'OSR, Directorate of Mathematical and Informa-
tional Sciences, under Contract 89-0228. or the specifications are too tight, then no robust controller

R. L. Kosut is with Integrated Systems. Inc., Santa Clara, CA 95054 and will exist.
with the Information Systems Laboratory. Stanford University, Stanford. CA
94305, During the transient or teaming phas, the estimated model

M. K. .au and S. P. Boyd are with the Information Systems Laboratory. set could be a poor representation of the true system as it
Stanford University, Stanford. CA 94305. could be quite large. Howe ver, if the system which generated

IF:-l Log Number 9200616.1 Ap q'qllpiot r rgný,w literally tranlatcd (The) bcginning (is the) the measured data is contained in the estimated set, the robust
half (f all 1161. controller will be stabilizing, though may be of low author-
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ity. (onversely, it' the model set become.,s sllaller after some tion-error parametct set eCoti •tn:: 'ILrputable from hntiile dta
time, this will be reflected in a higher authority controller records are presented in Section V. Ixtensions to the output-
with more desirable performance characteristics, error case and deterministic disturbances are discussed in

It is important to point out, and even emphasize, that Section VI. The paper concludes with some remarks In
although this approach is inspired by a separation principle, Section VII.
it is not optimal. Roughly speaking, set estimation and
robust controller design might benefit from being coupled. 11. N, A,'OS .,) I iIPiNAHI.S
For example, the input u might be temporarily manipulated Transfer l-unctions: In this paper, we consider sampled-
in such a way so that the set estimator could rapidly learn and data systems with transfer functions in the complex variable
therefore improve future performance at the expense of cur- z. If the system is denoted by G, then its transfer function is
rent performance. In a putely Bayesian framework, notions denoted by G(z) Typically, G(z) is obtained as the zero-
of optimality along this line are made precise in [9]. order hold equivalent of a continuous-time transfer function

Although not guaranteed to be optimal, the scheme shown P(s). Thus,
in Fig. 2 is at least less heuristic than the traditional scheme G(z) = PU•"Y{P(s)) (l)
of Fig. 1. For example, if the set estimator is consistent, I
that is, the true plant is in the estimated model set, and ( 1-z-1).IiP(s)} (2)
moreover, if we stop adapting at any given point, then we are ( s
guaranteed a woist-case performance as reported by the where -r+O,*'( .} and Y({-) denote the zero-order hold and
robust controller design. the usual z-transformIn this paper, we address the problem of parameter set teualzrnsomoperations, respectively.

esthimpationpere the adesysthem odlel c onn parameteric s A transfer function G(z) is stable if all its poles areestimation where the system model contains both parametric strictly inside the unit circle I z I = 1. The frequency re-
and nonparametric uncertainty. In our formulation, we use sponse of G(z) is the function G(ez I -) restricted to the
the measured data to delineate a parametric set which ac- domain ,,1w -< ,, where ow is the frequency variable nor-
counts for a priori knowledge of nonparametric dynamics malized with respect to the sampling frequency. For a stable

and disturbances. Observe that if measured data is not used, transfer function G(tz) the a i and f' 2 norms are defined

then the identified model set consists of a constant model set

and the "adaptive2" controller reduces to a single robust as
design. We can also recover the traditional adaptive scheme uGh , s
by replacing the robust design with a heuristic design which 1 ,/2
uses a typical model in the set, e.g., the "center" or JIIGIr 1 - [ G(e') 12 dw) (4)
"average" model. 2 ir_

We will not address the robust control design issues as Sequences: A sequence x is a function of discrete-time
different methodologies for robust control design, particu- i.e., x: l -. , where 1 = { 1.2. } is the set of
larly for plants with uncertal. iin.nparametric linear dynam- positive integers. We write x(t) to mean the value of the
ics, can be found in [26], [8], and [12]. Methods for robust sitive it W write t, tormea th vesof thsequence at a particular time t, normalized with respect to
control design of plants with parametric uncertainty are de- the sampling interval. Hence, time takes on integer values
scribed in [2], [51 and the references therein. In the case of
parametric set-membership uncertainty, minimax controllers Following [24i, a sequence x is quasi-stationary if
are considered in [22] and [21]. F(x(t)) is bounded for a s nd its autocorrelation

At present, there are several competing and complemen-
tary methodologies for the design of set estimators, e.g., 1 N

[291, [20], [17], [141, [181, and 1321. Related work on the r1 j(r) ý lim - -• g,(x(t)x(t - r)) (5)
limitations of identification of linear-time invariant systems
can be found in [131, [151, [24], and [28]. Our work here exists for all integers 7, where ,'(-) denotes the expectation
follows closely to that described in [31], [321, and [181 for operator. If x is a deterministic sequence, the expectation is
the disturbance-free case with nonparametric uncertainty, and without effect and quasi-stationary then means that x is a
in [231 for the disturbance case. The parameter sets devel- bounded sequence such that the limits
oped here are similar in form to those developed in 110), 1 NV

[111, 1251, and [31 for the case with no nonparametric r,,(r) = lim -- • x(t)x(t - r) (6)
uncertainty but with bounded disturbances. The foundation ,-.< N

and impetus for much of the work in parameter set-member- exist. For easy notation, we introduce the symbol e by
ship identification can be traced back to [27], and [41 for the I
state-estimation problem. (x) '= lim -- E ' (x(t)) (7)

The paper is organized as follows. After introducing some N() N =I
notation and standard definitions in the next section, the The power spectrum of x is defined as
problem is formulated in Section III. Parameter set estimates
for the disturbance-free equation-error case are developed in
Section IV. In the presence of stochastic disturbances, equa-
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This leads to the power in x given by that both y and u have finite power, that is, rJO) < . and
I irn N ru",(0) < ';

r(0) 2  J . = lim -- A. Model Set Assumptions

(9) The modcl set .1W is defined as follows:

Similar definitions apply to the cross spectrum Sxr(wo) of the .1 ,, y = Gu + V (c , u , V E (17)
sequences x and y. where 4 is the set of linear-time invariant systems and I is

The sample-mean operator 6.(.) is defined to be the set of disturbances. It ts assumed that the true system (16)

x) 1 k is a member of the model set .d. The reader should be
4 ( X) x(t). (10) cautioned that G defined in the model set _&' is not the

k I~
m same as G in (16). To avoid adding more subscripts Ger,

We use 1x X 42 to denote the truncated /,-norm of a sequence etc., unless otherwise stated as part of some set, e.g.,

I i G r=!V4, the symbols G, y, u, and u refer to the true system11 X 11 k2= X(1_x~)2 (11) (6)

*t= We first concentrate on the disturbance-free case, i.e.,

hence, u = 0, in the next section. The disturbance set I' is dis-
cussed later in Section V.

1,(x2) = The set of linear-time invariant systems is defined by=k 1 ll1 X(12)
= (){(l + AGWG): O}eprior, lAGIL. : 1} (18)

Linear Operators: The notation Gx means the sequence where Ge(z) is a parametric transfer function with parame-
obtained when the system G operates on the sequence c. We ters 0 E Opio,, referred to as the prior parameter set. The
write (Gx)(t) to mean the value at time t of the sequence system AGWG is referred to as the multiplicative nonpara-
Gx. metric uncertainty. It is a dynamic uncertainty characterized

S When we say that G is a linear-time invariant system, we by an uncertain but unity bounded stable-transfer function
mean that Gx is the convolution operation A,(z) and a known stable-transfer function WG(z). Note

that W0 (z) acts as a frequency weighting function, whose
(Gx)() = frequency response magnitude I W,(ej') I reflects the size of

k=o the nonparametric uncertainty. Since a parametric model of a
system is never complete unless we have some idea on its

where the sequence g is the pulse response of G. Thus, G limitations and accuracies, we assume that the uncertaintyShas the transfer function weighting function WG(z) is known. Having knowledge of
WG is precisely the assumption made in robust control

G(z) = > g(k)z-' (14) design, e.g., (8]. However, the center of the model set is
k=O fixed in robust control design. here it is parametric. i.e., Go.

Suppose the true system G is in 4,; and we are interested
The above definition restricts the sequence Gx to t > 1. in all the possible representations of G in 4. Solving for A.

Hence, the system G can be regarded as having no memory in (18) in terms of G and 0, we get
of events prior to t = 1, the initial time. Roughly, this means
all initial conditions are zero. G - G,

AG =(19)
To reduce notation, we use the transform variable z to WGG

denote the shift operator, so zkx(t) = x(t + k), Z-kx(t) We define
x(t - k), and ZkX shifts each member of the sequence x.

Ill. PROBLEM FORMULATION G =- 0 G Ge I (20)

The problem is to use the measured sampled data WcG,

(y, u: I = 1,---, N) (15) and refer to -" as the parametric limit set because it does
t not depend on the data set but rather on the true but unknown
to identify a model set suitable for robust control design. The system G. As a result, e* n ,30... is the set of all possible
system which produced the data is assumed to be a linear- parameter values consistent with the assumption that the true
time invariant system of the form system G is in 1. Consequently, it is not possible to

y = Gu + (16) conrider a "true" parameter value because any member of

where G is a linear-time invariant system with transfer func- Input and output scquenccs with nti. pImcwer Ocur. for cxamplc. when
is stahlc and it has linilc p0n , e r O.f n hcIt (. not nccssardit y s I Nc iU tion G( z), u is an applied input, y is the measuredl output, ~S ihi by an aippropriatc fi'cdhw, and Iht- 'xor icn" Iui N i t) to hhand I is a disturbance as seen at the output. It is also assumed fcldback %Vysfi have finmic jmrr

37



IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL 37. NO 7, JULY 1992

E* n Opi., is a possibility since the decomposition of G about 10 rad/s where the magnitude of W,., is greater than

into G, and AC is not unique. Thus, the goal is to obtain an 100. WG.2 is essentially the :;ame but has a zero dc gain.
estimate of the set 0* from the measured data. Shown in Fig. 3 are the frequency response magnitudes and

Throughout the remainder of the paper we further charac- the multiplicative error with respect to a "nominal" paramet-
terize the parametric transfer function Ge(z) by using the ric transfer function
standard ARX form [241 ,0 (

GO(z) = Be(zA(z)27)

B,(z) = btz-' + +bz-"' With the sampling frequency of 10 Hz,

A,((z) = I + atz-' + " " +a,,z-n [ 0- -0.9048 (28)

0 = [a, -- -ab, ... bI T. (21) , bo, 0.9516(2

Thus, the parameters are the coefficients in the parametric This transfer function can be viewed as an approximation of
transfer function. With this parametrization, the limit set G(z) obtained by neglecting the resonance in (23). Remem-

becomes ber, there is no true parameter value, rather, there is a true
set 0*, one element of which is this nominal parameter

= OG -Be value.
E 0: W• • . (22) Points in the limit set corresponding to the above weights

are shown in Fig. 4. These points are obtained by testing 8 in

The problem we are addressing in this paper is to find an (19) over a set of points. If a point's corresponding AG
estimate of 0*. We should also point out that other than satisfies ]IA61a, t , 1, then it belongs to e*. Since
what is assumed for the transfer function AG(z), we do not W0 .2(eJ') is zero at o = 0, i.e., the dc gain of G(z) is
estimate it from the data. We first give an example of e*, assumed known, and the two parameters in 6 are constrained
and then in the next section, describe a set estimator in the to lie on a line in the parameter space. The line becomes
disturbance-free case. "blurred" in the limit set corresponding to WG. I because

there is no frequency where the frequency response of W. .,
B. Example of Limit Set is identically zero.

Suppose that the true transfer function is

10 IV. DISTURBANCE-FREE EQUATION-ERROR SET

G(z) 0 o.;rfl ESTIMATION

S + In the disturbance-free case, we have v = 0. Thus, the

(102 model set in (17) reduces to

s 2+ 2(0.005)(10)s +102)3 (23) -,&(= {y = Gu: GE4 (29)

The sampling frequency is chosen to be 27r(l0) rad/s or 10 with 9 given by (18).
Hz. Observe that the system has a simple pole at I rad/s, and Theorem 1: Suppose the measured data { y, U: I=
a very lightly damped resonance at 10 rad/s. Suppose we are 1.-., N} is generated from y = Gu with G e P. Then the
interested in obtaining a good low-frequency model by ne- following holds:
glecting the resonance, but accounting for it as one realiza-
tion of some nonparametric dynamics. Thus, select the para- 0* [ Of N] _ O,, vk, e [1, NI, vNe - (30)
metric transfer function as

where O[N] and 0, are given by 3
G+(z) = l +az-' I b[1 (2 4-- {: 11 Agy- B9uI.,2 :s 11WgBoullk2} (31)

Consider the following weights: 1[NJ Nlek. (32) U{ /"'/l4k=l
WG• (z) = 65 Te;f s (25) Remarks.: We refer to Ok or e[NJ as equation-error

s + 5 ~parameter sets because the equation-error term Ay - Beu •
4 ,appears in the definition [24]. Observe that the equation-error

W.2 ( z) = WG.I ( z) - 65( -) . (26) sets depend only on the measured data and the known bound-
ing transfer function Wc(z). Because 0* is a subset, it

Either of these weights can account for the resonance, but follows that )k for any kE[1, N] or 01 NI is an estimate
they reflect different prior low-frequency uncertainties. The of e*. These sets arc easy to compute as will be shown in
weight W(,., reflects a low-frequency multiplicative uncer- Section IV-C. First we prove the theorem.
tainty of about 10% where it has a dc gain of about 0.1, and Proof: First, recall the following fact from 171. If T is
it anticipates a rather large resonance at frequencies beyond a stable lincar-hine invariant operator with transfer function
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with 1A*1_ 1 Note that 0 * and A* must agree with the

30o Ao.Y - BJ.u- A(;WGBG.u (39)

100 Taking the 12-norm, we have

B lot 11 A.y - B..uljk I (40)

Wi Since 1 cA* jc, - 1, (36) implies that 0* must satisfy

o 10 IAe.y - BW.ulis 11 WGBB.uI1, 2. (41)

0o5 •Therefore,

O.4 O*e (0: B IAoy- BOUlIk2 < fl WOBuIlA 2} = Ek (42)

10-1 for e* c Ok. From this, it follows immediately that e* c-
10to 10.2 10- 0o ot 10 e[N.

Fs•iq-uY (rtal/l)
Fig. 3. Frequency response magnitudes of WG. ,, W. 2 , and (G - A. Frequency-Domain Expressions

Go.,)/ G,. Define the asymptotic equation-error set as

I . irn ek. (43)E- iMEk -,"o
k-cot1.8 The limit set e* and the asymptotic equation-error set e*_

1.6 are expressed in the frequency domain in the following
1.4- Theorem 2:

i) The limit set has the following decomposition:
V * eW b n eo (44)

"where

0.8 f
isO '~ .b : stable (45)

0.6is 0 f" V. WB

0.4I e = {0: I Ao(eJO)G(ej-) - B(eJ) I
-01.05 -I -0.95 -0.9 -0.85 -0.8 -0.75

paiAmeter a W W(ei-)B.(e") 1 (46)
Fig. 4. Lin-it sets O'for WG.I and W. 2 . ii) If y = Gu and u has spectrum S,,(w), then

T(z), then _= 0: (AO - B9

T sup I T(eJw)I (33) -2

u IITX1k2 (34) IWGBO)S.d dw__0}. (47)

11.X,1,, 0 1IXl1k, .

keM Proof. The decomposition of 0* follows directly from
= sup {(: IITxl1k 2 -- "lYXllk2, the definition of the X'** norm. The asymptotic set descrip-

tion is a direct application of the spectral expressions in
* Vjlxl! 2 < o, VkE~l~}. (35) (9). 0

As a direct consequence, we also have Theorem 1 states that e* _C %k for all k. It is clear from
the frequency-domain expression for E* that e* c E_. also

SUP sup TX1l2 = 714k,2- (36) because 0 E EO* implies that the integrand in the frequency-IHTl-,.' ! domain expression for th is negative. Note also that the
To show that definition of W* describes a parameter set via an X. norm.

By comparison, E)_ is described via an A, norm when u isI C o', Yk c-i (37) white noise with S,,(w) = 1, i.e..
let O* E (-)*, i.e..

30. _ - < . (48)
A3- 

t B 
-,39)
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B. Use of Data Filtering to the ordinary least-squares estimate when W,% 0- This

The effect of data filtering is to replace (y, u) with occurs only when nonparametric dynamics are neglected.

(Fy, Fu), where F is a filter with transfer function F(z). Proof: Using the definitions in the theorem, we have

Hence Aay, - 1Bu = y - 0 To (61)

-k = {O: 1 AeFy - B&FUI11 k2 B WBOW.Fu1k2)}. (49) WGB3U orw I02rW (62) I
The effect of the filter is seen more clearly in the frequency- ' U
domain expression Hence, substituting into (31), we have

E = _AG -:2 ek= - 20, EWP: ly 11 y -0 T OT1c2_ T 2[ 0 (63)

WGB, 12) 1F12S,-dw _O}. (50)whic Using (12), the quadratic for, ofp (3k

Fl dW ~ - (50) whichi proves parn - omof'' olosIm.ae

Part ii) is obtained by direct substitution when rIk' exists.The filter and the input spectrum form the frequency-depen-. To prove iii), observe that 1"A can be expressed as follows:

dent weight I F(e"') 1 2S..(W) which also appears in stan- r tt,. , ] ran b

dard equation-error minimization methods [241. r, k . IA 1k Q2

C. Computing the Equation-Error Set k r[12 rk.2

Ideally, it is desirable to compute e0N]. This involves where Iintersecting the N sets kI I = dk(4)~r) (65)

{ek: k = 1,---, N}. "r..,2 = 4('0,0r) (66)

We start with the following result which presents a conve- r. k T W
nient form for computing Ok. . ,,)( T) (67)

Theorem 3: Define the following vectors whose elements The rk.22 matrix subblock can obviously cause 1"k to have I
are sequences: negative eigenvalues. The square roots of the eigenvalues of

[ r;' are the lengths of the semiaxes of the ellipsoid. There-
(51) fore, as rk becomes singular, some directions of the ellipsoid

become unbounded. A hyperboloid results when one or more
0 , -•z'y z-ny]T (52) eigenvalues of Pr become negative. F]

Note that if the spectrum of u is concentrated at those
0= [z-'u ... Z-mul (53) frequencies where I WG(ej"') is large, the r..22 matrix 3

Then, subblock can have negative eigenvalues. This tends to make
i) ek can be expressed in the quadratic form r, become indefinite, so that %4 becomes an hyperboloid.

This will be illustrated in an example in the next section. 3
Ok= {0:0~ko - 2 + •k 0} (54) D. Example of ek

where akEW, fOke-W, and PkErxP (with p = m + n) The true system was selected, as in the previous example 3
are given by in Section Ill-B using the weight WG., defined in (25). The

Cak = e'k(Y') (55) input was a log-spaced sinesweep from 0.1 to 31 rad/s over
16k = Ok('Oy) (56) 102.3 s, thus, N = 1024 data samples. Two filtered data sets

were generated using eighth-order low-pass Butterworth fil-
0 0 ters; one with a bandpass of w.= 2 rad/s, and the other with

k =_ S(M9 (W (57) =f I rad/s.
Fig. 5 shows 810 2, processed with the two data filters. An

ii) Provided r'- exists, another expression is hyperboloid is obtained with wf = 2 rad/s and an ellipsoid
with wf = I rad/s. (Note that only one branch of the hyper-

S= {0: (0- 0 l",(0 -- j,) -- V,} (58) boloid is shown in the figure.) This confirms the earlier point
that when u is concentrated at those frequencies where

0
k = -k 10k (59) 1 WG(eJ')l is large. (k can become unbounded. Points in

Vk = lkr - (60) the limit set e* are shown and, as predicted by the theory,
V k = k k - k. ( are all contained in the equation-error sets.

iii) All the eigenvalues of rk are real and some of them
can be negative. When 1, > 0, 0,. is an ellipsoid in jp . E. Computing Intersecting Ellipsoids
When V, is indefinite, 0, is an hyperboloid in Wl P. To compute -1 N I requires computing the intersection of

Remarks: In part ii), the center of the set d, is identical the sets k (- 1, k I.. - Since all the (-, are convex, cI
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3 tions can be expressed as

y = Gu +, (69)
2.5 Go,,,,.., = with yt=(0

*2 Z g(T. )i(t - 7), V t EWA. (70)

I s If G is stable or is in a stabilizing feedback, then j(r) -- 0

exponentially as I - co. Thus, the effect of initial conditions
dies out exponentially fast, or slow, depending on the slowest
modes in G or the closed-loop system. Hence, for suffi-
ciently large N, we have ON = 0_. More precisely, forI •,,_ e... -1,t 2 each 0 e E..,

, lim inf 110 -j ,,1 = 0 (71)

-1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 N-.oo iNCoN(
Ia=e where is"I a norm on W P°. In words, the estimator willSparainelr a i

Fig. 5. E1t m4 for each data filter; points in limit set are also shown. e rentua isy nor m o nile p m Inlor s th e e sim toeventually report possible parameter values that are close to

the asymptotic set, and hence, asymptotically bound the limit
S3I' set e* as the data length N increases.

d Another way to account for the effect of initial condition is
75 • k=200 to assume bounds on D and the tail of g

2- Z g(r)I 1 5K (72)

1 *(0 1 < '2, 1:< 0. (73)

k 0 "kThen I . K(t) K 2, and it can be treated as a bounded
disturbance in (69), see e.g., [30).

G. Other Forms of Nonparametric Uncertainty
* 0.5

The equation-error sets we have developed so far assume a
multiplicative form of nonparametric uncertainty. This is not

-1.2 .1.1 -1 -0.9 -0.8 -0-7 -6 a necessary restriction as they could also have been devel-

pirm, a oped for other forms. The requisite modifications are shown
Fig. 6. The equation-error sets 1Ok: k = 200,300,--., 1024) using the below for some other typical forms.5 filtered data with ea/= I tad/s; '* is also shown. Theorem 4:

i) Multiplicative: If

follows that O[N] is convex. In general, it is not, however, B,I an ellipsoid. To see this, we plotted some of the bounding G = +-( + WG), AI cGi, .. 1 (74)
ellipsoid sets in Fig. 6. Specifically, it shows A,

{kO: k = 200,300,-.., 1024} then

I corresponding to the previous example using the data filter eOk {O: 11 Aey - B, ul k: 5 II WGnU 1,k2}- (75)
with cutoff at I rad/s. Observe that the intersection of the ii) Additive: If

sets produces a smaller (convex) set. Several approaches are B,
possible. One approach is to compute the smallest volume G = - + ar WG, w-
ellipsoid that contains the intersection of the ellipsoids. This A' (76)

is discussed in (61 and [3]. then

F. Effect of Initial Conditions Ek (0: 11Afy - BOUJJ :5 1 WGA.ujkd. (77)

As defined in Section II, the sequence Gu evaluated at iii) Inverse Multiplicative: If
time t E H is defined by

I- 1I6 Be __(78)(Gu)(t) = F g(0)u(t-r) (68) A---e I + a.0 W0 I IL,- 1 (78)
r=l

To account for initial conditions, let ri denote a bounded then

input applied for I _< 0. Thus, the system with initial condi- 0-), { 00: A0 y - B, u !s 11 W, A,,.y I1 (79)

41



IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL 37. NO 7. JULY 1992

iv) Feedback: If V. EQUATION-ERROR SET ESTIMATION WITH
DISTURBANCES

G = B. IIGA 1 (80) There are many ways to characterize the disturbance envi-

e ' ronment both in terms of the location and the type of
SI + Ag WG- disturbance. To simplify the discussion, we assume that the

disturbance is located additively at the output, as given by
then (16)

Ek= {0: 1IAey-Beulk:5 11 WGBeyll, 2}. (81) y =Gu+v.

v) Coprime Factored (Coupled): If The most common type is the stochastic disturbance which
we consider in this section. Deterministic " worst-case" types

B0 + AB W(2 A of disturbances are discussed briefly in Section VI.
AeA + AA Wr :5 1 (82) A. Stochastic Additive Disturbance

then Suppose that the disturbance v is a zero-mean quasi-sta-

Ek= (0: 11 A~y - B6u11k 2 :5 [B U } (83) ino the setOk =O: tA~y-Bou III WAY Ilk2l y= {u: S•..() :5 a' IW,(e•) ,

vi) Coprime Factored (Uncoupled): If S.,(w) = 0, v :5 r) (92)

B9 + A 3 WB where WH(z) is a stable and stably invertible transfer func-

=A + AA WAA ' I l,, 11 IIAA 1r. r 1 (84) tion. Equivalently, we can think of v as the output ofa stable
uncertain linear-time invariant system H with a white-noise

then input e. Hence, 3
(0= {o: II AeY - BnueI.2 k - II WBullk2 + 1IWA Y, 2 }- , = He (93)

(85) where H is in the set of linear-time-invariant systems A' and
e is in the set of stochastic sequences 1

#
tsboh defined as

vii) All the above set estimates ek have the property that follows.

e* c- 0[N] E ek. (86) ,)fg {A.A Wh. stable: 11AHI,. :5 1} (94) 3
Proof.- The proof of the property e* c ek for all the =

cases above is similar to the proof for Theorem 1. We will A ' {white noise e: S,(w) = 2 <o 2 S,,(w) = 0,
show it for case vi) only. Let 0* e W", i.e., V• , boundedfourthmoment) (95)

B0. + A*8  B(7a WH (87)
A6 . + A* WA The disturbance set then becomes

with I'= {v = He: HeJh", ee W'th}. (96) 5
A*B Ii.,r -- I and IIA 1, I s 1. (88) Assuming that WH and a are known, the disturbance set

Since 0*, A*, and Al must agree with the measured data defined above is otherwise parameter-free. One can compare 3
A this set description to W which contains the parametricU

this 
- BdesripAo WtU -•A WAY' (89)A 6 .y- B u - A~ - WAY. (89) transfer function Ge(z). As it is, the disturbance set is

Now take the 12-norm and apply the triangle inequality with perfectly adequate for describing a sensor noise. However, in

(88), 0* must also satisfy the case of a general disturbance reflected to the output, he
set merely serves to provide an upper bound. For small

11 Ae.y - BG.ull, 2 <-5 11 WBu I k2 + 11 WA Y11k2. (90) disturbances this is adequate, but the set is potentially conser-

Therefore, vative otherwise. For a more complete discussion on this 3
matter, see (191. W0*"e 0: 11 Agy - BOullk7 - 11 Wsu1 2  We now have the following.

+ 11 WAY 11 k2) = Ek (91) Theorem 5: Suppose that the true plant which generated
and W)y C_ }k= El (91) {y, u: t I 1,-'-, N) has the structure described above.

and e C .Then
From these forms it is straightforward to generate the

corresponding quadratic forms for computing the sets. In
those cases, when the right-hand side of any of the above (9,- * w.p.las N- c. (97)
inequalities does not depend on the parameter 0, the center of ii)
the parametric set is the usual least-squares estimate, e.g., (98)
1321.
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where the equation-error sets are now defined as follows: ranging terms and filtering by W,,' gives

I ON2-2 {0: ,([W,'(AY- BOu)I2) W,'(Aoy- B.u) = AGW;j'WBou + AAoe. (107)

2' WI Squaring both sides and taking autocorrelation at r = 0, we
( N((WGBOU)2) + o2(l + OAoA)) (99) get

1 0: Wo,'(Aoy - Bu)]2) 9([W, -(Ao - BU)j 2) =• ((,,w, ,o•u) 2)

- •'((wj•'wnOu)') + "'(l + o0.oA)} (100) + •((A,, Aee)2 ) (108)

5 with where the cross terms (between e and u) are zero because e
and u are independent. Now take the supremum of the

-A • [a- a,]T (101) right-hand side to obtain the infinite-data parameter set

3 iii) In the frequency domain1 -, _-(,,J)

{ -2* 10: eiw)W '(Asy B5u)]()27 1 H~ej) 12< sup [i((&W,,o W,•, B,)')
with a,

, : (I AG - Be G - 1W0B 2)s..(W) + t((Au Ae,)2)1 . (109)

+ I A6 12(1HI 2S,,(W) - I Wn i202). (103) To evaluate the right-hand side above, we now use the
assumptions J1Arjr -s1, 1. IAHI.r :s 1, and ee toObserve that both the finite-data set ON, as well as the obtain

infinite-data set 0.*, depend on the noise intensity a and the
disturbance weighting transfer function WH, whose inverse sup ((A.w .woB u)) -e((W,,'WBu)2 )
acts as a data filter. The theorem is analogous to the many 0401-r.:5

I prediction-error based parameter estimators in the sense that (110)
for a sufficiently long data length N, the estimate is equal to
the true value with high probability 1241. In our case, the sup sup 4'((AH A~e) 2) = sup d(( A e)')3 finite-data set ON will contain 0* with high probability. Part 1w,, lllL,.sI e ,
i) of the theorem means that for each 0 e 0,*, there is a (I11)
O§ E 0N close to it as N increases. More precisely,

= o21 A,112 (112)
inf 110 -G,, -0 w.p. l as N-- , (104) X2

U02 (I + (113)
where f1 is a norm on U2 P.(k=3I The integrand in the frequency-domr'in expression for 0.
is always negative provided that for all I w 1 = (l +A0,). (114)

12 _2 This yields the set O_* as defined in the theorem.

G B-- [- - < (I WH 1 2.2 _ HI 2S,.). Observe that ON has precisely the same form as 0,,*
* -A6  A9  S- except that the operator e(') is replaced everywhere with the

sample mean d,(-. To show (97), recall from [24, pp.
(105) 34-35] that if the stochastic part of x can be described as

We can now see the usual effects of signal-to-noise ratio. As filtered white noise, then the spectrum of an observed single

the noise power a2 increases, the "volume" in 0.. will realization of x, computed as for a deterministic signal,

increase. Conversely, if S,,((w) is large at many frequencies, coincides, with probability 1, with that of the process, i.e.,

E** will shrink. In addition, in the frequency ranges where IN
IWH(ej')I H(ej'), an indication of poor prior informa- lim 9'N(x 2 ) -- lim - Z (x(t)2 ) - •(x')" (115)
tion, very large-input power at these frequencies is required
to keep O** small. The conditions for this convergence are that x is a quasi-sta-

Proof: Under the assumptions, the true system can be tionary sequence and the white noise has bounded fourth
expressed as moment. Note that since u and y are assumed to have finite

power, Wj.'(Aoy - Bou) and Wi'FWGBou are quasi-sta-
Be 106 tionary. Thus, the convergence in (97) holds.

Y A0 (1 + AG W)U + All WieTo show that 0* c:-0., we use the frequency-domain
Sexpressions in iii). Observe that the frequency-domain ex-

for some I1,A,1; ,1 • I. 5 1A,.AI 11 A I. and( e e ,' Rear- pression for (- can be obtained by substituting y ý Gi +
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He in (100) to get VN = 13,_rN '0,,, - YN. (127) 1
{: ,([ W (AG - B,)u + WýIAoHe12) iii) When 1'N > 0, 0, is an ellipsoid in 1, I and when FN

is indefinite, 0 N is a hyperboloid in W.tP.
B,,w u)') + a1 . (116) The proof of the above proceeds along the same lines as

that of Theorem 3, and is omitted.
Now use the fact that u and e are independent to simplify, The infinite-data parameter set estimate can also be ex-
then apply Parseval's theorem. In the frequency-domain ex- pressed in a form identical to that for the finite-data set
pression, the assumption He Y3f' means that (0, = (0: <+- 2 f3T0 + oTro •- O} (128)

1 H(e-") I IS,.,(,,) - I W 1 (el-) I 'a' -_ 0, V (117) where a ElZ, f3e(-V', and r E ý1 -" are given by

and 0 E e* means that

IAOG - B6 2
- 'WGBG

2  0, VW. (118) a= ("'}(W[y)(1

Thus, 0-E* guarantees that fr(w) is negative for all fre- fi = (((w W ii'4))(Wjy)) (130) *
quencies, and hence, e* c_* e. 0] r - j((w=)W )r )

1) Example of Bias Estimation: As an illustrative exam-
ple, consider estimating a constant in noise [o2I, 0 -

y(t) = bo + e(t). (119) W i ((WiW0.ou)(w,ýtW ..u)r). (131)

In this case, WG(z) = 0 to reflect the absence of nonpara-
metric uncertainty, and H(z) = 1. In addition, Wj(z) = 1, C. Example of eN with Disturbance
and He Xt is satisfied. If e e V, hnthe etmt
for bH .is ., then the set estimate The example system is as before with G given by (23),

or =o 1b: (- 2< 2and W0 given by (25). The disturbance dynamics is

H{ =( - (132)

where b = d',,(Y). For large N, the right-hand side behaves z - 0.9 (
as a - a2 , where ao is the true noise variance. Note that

the limit set 0", in this case, is the point bo. Since b -" b0  and the disturbance weight is

as N- co, we see that e* c 0. as stated in the theorem, I
Furthermore, as the bounding variance a approaches ao, the WH(z) = -H(z) (133)
set 0. becomes a point. Observe that e), does not shrink to 6

a point when there is nonparametric uncertainty, i.e., WG(z) where 6 . E (0, 1) is a parameter chosen by the user.
* 0. The disturbance v is simulated as the output of H driven

B. Computing the Equation-Error Set by e, a sequence of independently distributed Gaussian vari-

For computing 0 N, we have the following result ables with zero mean and variance a 2. Three series of

Theorem 6: As in Theorem 3, define the vector sequences experiments are carried out to study the effects of noise

0,,, and 0,. Then: power (choice of a), mismatch between H and WH (choice
i) 0 N can be expressed in the quadratic form of 6H), and length of data record (choice of N). In the first

i ) , = 10: be expree in t + q ad c fm two experiments, the input u is a linearly-spaced sinesweep

v = {0: eOr~•O - 2t3r0 + a 1 . 0} (121) from 0.01 to 0.5 rad/s over 102.3 s, giving N = 1024 data
where at, eR, ON cMP, and rNE2P are given by samples. In the third experiment, N is varied.

To study the effects of noise power, a is varied in this

aN = -((Wt;'y)2) (122) experiment. As suggested by Theorem 5, the parameter setestimate should expand as a increases. This is supported by
ON• = +•N((Wh';*)(W~f'y)) (123) Fig. 7, where EN is plotted for a = 0.1,0.2, and 0.4. Note

that in all cases shown here, e* 9_i 1%N.vand 04N

rN, W- (( 0) ( Wjý I-0) T) In Fig. 8, the value of 8, is varied from 0.6 to 1.0.
Again, as suggested by Theorem 5, as the mismatch between

,(124) Hand WH becomes larger, i.e., 16HI becomes smaller, e U
1 (124) grows.

0 N( w .fw )U(W' wG40d)U) The effects of different data record lengths are studied in
ii) Provided r,1"' exists, another expression is the last experiment. For the cases of N = 1024 and 2048

with a = 0.5, and 6,, = 1.0, 0* is not in 9 N. This is still in

0/ = jo: (0 -- N)' r(0 - oN) -- Vj} (125) agreement with our results because in the stochastic distur-
bance case -* is only guaranted to be in 0

N as N tends to

t~r = FN I'
3N (126) infinity. As shown in Fig. 9, (-)* is in 0-,. for N = 4096. -

441



l3-.-.--..---.----- 3 - _ _-• .. . .- ......... .. ---.... ----.....

2.5 2.5

2 2

I 1.5

1024

4096 "'VMSo

0.5 - 0.5-

.- 0.4 0c 2 - 1 1 -09 -. 0.7 -.

-. 2 -1.1 -1 -0.9 -0.8 .0.7 -0.6 -. 2 .1 '1 -0.9 -. 2 0.7 -0.6

par•emler a pra me-ra
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given by

_±w0--u } (135)
2.5- 6  At L 51 r' 1k2l

l.0 e°e[N] k N er'. (136)

Remark: We refer to E)'e and 0°'[N] as output-error
I 1.5 . parameter sets because the output-error term y-

B• / A ) u appears in their descriptiors.
I - . Proof: The proof of e* c_ N - e is identical

- to the one for Theorem 1. 0]
0.5s The sets ek and O'e are both worst-case estimates, both

. contain E*, but they are not necessarily the same sets for
identical input sequences. Another major difference is that

.12 .the inequality in ek are affine in 0, whereas in
pae-m•r a E)" they are linear fractional in 0. The former property

Fig. 8. ON for different values of 6H (a = 0.2, N = 1024). makes it very easy to compute ek, as has been shown,
whereas the latter makes it difficult to compute the output-ei-

VI. SOME EXTENSIONS as usual.

In this section, we first consider the extension of our B. Deterministic Additive Disturbances
results for the equation-error set estimates to the output-error So far, we have only considered stochastic disturbances.
set. We then consider disturbances which are deterministic in We now briefly examine the effect of deterministic distur-
nature rather than stochastic, as considered in the previous bances.
section. Suppose, as before, that the true system is

A. Disturbance-Free Output-Error Set Estimation = Gu + He (137)
The results obtained for the equation-error set in Section with G E • and H e' as previously described. We now

IV can be repeated mutatis mutandis for the output-error consider the following deterministic set which describes
set, but for the notable exception of forming a quadratic set quasi-stationary sequences with bounded spectra:
for computational purposes none exists for output-error iden- {e(t): S.,(w) (138)tification [24).

Theorem 7: Suppose the measured data { y, u: t - We then obtain the following.
1,---, N) is generated from y = Gu with G E V. Then the Theorem 8: If e E •#,,c, then
following holds: (

0* 01ot[NJ_ 301, vke 11, NJ,vNe M (134) 1 A B

where (-)"'[ NJ and 0"'" are the output-error set estimates - ýf'•((Wk l'W 0 RBu)2) + 0~ vil+OQ0A } (139)
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and estimate, these nice properties arc lost, which is typical with

0* - lira O, (140) output-error identification.
k-,w The next step is to use these set estimates with a robust

Proof: The proof of (140) proceeds the same as Theo- on-line control design procedure, One approach would be to

reins I and 4. Let 0* E 0*, then bury the parameter uncertainty in another nonparametric
uncertainty by finding an overbounding frequcncy-depcndent

- A y- B5 u) tAW,,W 0 BoU + H An.e" weighting function. This is a potentially very conservative
(141) approach. Alternatively, the minimax approach in 1221 and
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Robust Control Design for Ellipsoidal Plant Set

MING K. LAU' t STEPHEN BOYD* ROBERT L. KosUTt GENE F. FRANKLIN'

Abstract This paper presents a control design method composed of the process and measurement disturbances,
for continuous-time plants whose uncertain parameters in and the initial states. Another example of solving control
the output matrix are only known to lie in an ellipsoidal problems as minimax problems is [18], which presents a
set. The desired control is chosen to minimize the maxi- controller design method to minimize the weighted sum
mum linear quadratic regulator (LQR) cost from all the of the maximum linear quadratic gaussian (LQG) per-
plants with parameters in the given set. Although no par- formance objectives over a set of worst plant parameter
ticular form is assumed for the minimax control, it turns changes.
out that it is the LQR control for one of the plants in The approach of using set-membership to describe
the set, the worst-case plant. By defining an appropriate Te paproamet usint s.gaineroh ity insremappngwhic mas aneleentfromthegive elip-plant parameter uncertainty has gained popularity in re-
* mapping, which maps an element from the given clip- cent years, e.g., [14], [161, [26], [3], [17], and references
soidal set to an element of the same set, the existence of therein. This approach of parameter identification is orig-
this worst-case plant is proved. A simple heuristic algo- ireted from early works of [22] and [5], where the set of
rithm used to compute the worst-case plant is also given, possible system states compatible with the observations is

shown to be an ellipsoid. Motivated by ellipsoidal bounds
on plant parameters, we pose the following robust control

1 Introduction problem: given that the unknown parameters in the out-
put matrix of the plant are known to lie in an ellipsoid,

A problem of great interest in control theory is the design find the control which minimizes the maximum LQR cost

of a controller which can guarantee some level of perfor- from all plants with parameters in the given set. Viewed

mance in the presence of plant parameter uncertainty, in terms of game theory, the control and plant uncertainty

Kharitonov's theorem provides a necessary and sufficient are strategies employed by opposing players in a game,
'nalysis test for determining the robust stability of poly- where the control is chosen to minimize the LQR crst

nomials with perturbed coefficients, however, there are and the plant uncertainty is cho-.en to maximize it. As a
few results that exploit Kharitonov's theorem for synthe- special case of our problem, finding the finite-hort .on con-
sizing robust controllers, e.g., [7] and [121. Another ap- trol for a discrete finite-impulse response (FIR) plant, was
proach to this problem is to define a set of nominal values solved in [151. In that case, it was shown that the mini-
oi the uncertain parameters and consider deviations from mization is a convex optimization problem. In this paper,
these nominal values. A comprehensive survey of the dif- we are generalizing the robust control design problem to
ferent parameter space me.thods for robust control design, find the infinite-horizon controls for continuous plants.
as opposed to frequency domain methods, can be found The assumption that the output matrix in the plant de-
in [23]. scription contains all the uncertainty deserves further dis-

The technique of solving control problems as minimax cussion. First, this is a natural extension of the discrete
optimization problems is the basis of the so-called "Hoo FIR finite-horizon problem solved in [15]. In the discrete
optimal control theory." In the standard Ho, problem, case, FIR model sets can be identified from input-output
the control input is chosen to minimize the norm of the data of a plant, i.e., the coefficients of the FIR model are

output and the exogenous input is chosen to maximize it identified to belong to a set. This is particularly attrac-

[2]. Along this line, the structured singulai value (p) syn- tive when a bounded noise model, often a more realis-

thesis method is used to find controllers which minimize tic assumption than a statistical noise model, is used in

a Flo objective subject to plant perturbations, e.g., see the identification [19]. In the continuous case, Laguerre
[8], [9], and references therein. In [20], a game theoretic models can be used so that the identification is reduced
approach is used, where the control, restricted to a func- to estimating the Laguerre coefficients [25]. Uncertainty
tion of the measurement history, plays against adversaries in the Laguerre coefficients can then be described by set

membership of the output matrix. Second, by limiting
"*Information Systems Lab, Stanford University, Stanford, CA uncertain parameters to the output matrix, we simplify

q4305. the analysis and gain more insights into the nature of the
tSupported by Sandia Nation& Labs' Doctoral Study Program. solution
I Integrated Systems Inc., 3260 Jay St., Santa Clara, CA 95054

and Information Systems Lab, Stanford University. Research sup- The paper is organizcd a&s follows, after stating the
port from AFOSR under Contract F49620-89-C-01 19.
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problem in the next section, the minimax control is we can interpret - as a set of "view angles" from which

proved in section 3 to be the LQR control designed for the we calculate the cost. The tniniinax control frorik (5) Is

worst-case plant from the given ellipsoidal set. By defin- therefore robust to all these "'view angles." This interpre

ing an appropriate mapping, which maps an element of tation is interesting since in practice we seldom look at U
the given set to an element of the same set, the existence performance from just one angle.

of this worst-case plant is proved. In section 4, a simple
algorithm used to compute the worst-case plant is given.
A two-mass-one-spring example is used in section 5 to il- 3 Minimax Solution
lustrate the ideas presented. The paper concludes with
some remarks in section 6.

Trto solve the minimax problem in (5), recall from [6, pages
274-282] that (u', c") is a saddle point if

2 Problem Formulation J(u',c)KJ(uc)J(uC) (7)

Couzeider the following family of systems for all u : IR+ - IR and c E 0. In that case, we have

i(t) = Ax(t)+bu(t), x(0) = zo (1) (u*,c') = argminmaxJ(u,c) = argmaxminJ(u,c).

Y(t) = CT X(t), (2) (8)
Our goal in this section is to prove that there always exists

where A, 6, and zo are fixed and given, and such (u*, c) for (5).

c E G = {0: (0 - OJ)TR(O - 0C) :5 1, R = RT > 0}. From LQR control theory, the second inequality in (7)
(3) is true if

For a given control, u : R1. - 1R, and a fixed c E O, the U" = ULQR(c), (9)
LQR cost is defined to be where ULQR(C") denotes the LQR control designed for the

, )t( plant in (1) with c = c" in (2). It follows that the first
J(u, c) •o [ru(t) 2 + yi(t)2 ] di. (4) inequality in (7) is also true if

We assume that (A, b) is controllable (or at least stabiliz- c* = arg max J (ULQR(c), c). (10)
able) and (c, A) is observable (or at least detectable) for C

all c in e. The robust control design problem is to find a Thus, if c" exists for (10), the minimax problem in (5) is I
control u : I1+ -- IR that solves the following minimax solved by (9). Note that the existence of c' is not obvious
problem: because c' must have the property that when VLQR(c*)

minmax J(u, c). (5) is applied to each c E E, the maximum cost occurs at c*.
U cEO

Since no particular form is assumed for the control u, such We now express the LQR cost in (10) in a more con-

as linear state-feedback, the minimization in (5) is over venient form. Since (A, b) is stabilizable and (c, A) is

all possible u's. Note also that we chose the initial time detectable for all c in e, for each c E 0 there is an asso- I
t = 0 for convenience only, the problem can be posed at ciated state-feedback control uLQR(c) given by

any initial time t = to. Therefore, one can design a new
controller each time 0 gets updated. uLQR(c) = -Kcx, (11)

The cost objective in (4) and the ellipsoidal set in (3) where
lead to another interesting interpretation for the minimax K, bTPC (12)
problem in (5) once we rewrite (4) as r (

and P, satisfies the algebraic Riccati equation U
J(u, c) = [ru(t)2 + rT(t)ccTx(t)] dt. (6) +SATp + PcA- I-PcbbT pc + CC = 0. (13)

Now, instead of saying that we are designing a controller
for a set of uncertain plants described by (1) through We will use X, to denote the solution of the associated

(3), we can also say that we are designing a controller Lyapunov equation, 3
for a set of uncertain objective functions. (This interpre- (A - bK,)X, + X(A - bK,)T + =oXT = 0, (14)
tation contrasts with the standard LQR design where a (
controller is obtained for fixed weighting matrices.) Note where
that cJz(t) is a dot product, so it depends on the an-
gle between c and x(t). Geometrically, the set 0 sweeps [, (A6Kc)1r 0 ZT(AhK,)Tt dt (15)
out a "cone" (with a curved base) of possible c's. Thus, -

0!



The LQR cost in (10) can now be expressed as To do that, we need a lemma extracted from [11] and a

J(ULQR(c'), c) simple form of Brouwer's Theorem [13, pages 366-367]

= [ruLQ (C')2 + Y2] dt Lemma 1 If(A, b) is stabilhzable, then over any region
twhere (c, A) is detectable, the algebraic Riccati equation

+ dt solution P, in (13) is continuous in cci .

SrKc.e )lxOxT~e(- ')7KT dt Proof of Lemma 1 C'onsider the matrix-valued func-10 0 Ctional
+ c Te(A-WK•")(xoxTe (A-bK,° )rIC dt1J0 0 g (P, ccT) = AT P + PA - 1 PbbTp + CCT. (27)

= rK,.X,.KTc. (16)+r

U For a given c', Kc.X,.KT in (16) is fixed. Thus, the For any c, PC satisfies (13), so g(P ,cc T ) = 0. As a

maximization in (10) becomes quadratic function in P and a linear function in cc7 , thefunctional g is infinitely differentiable, and its derivative

c" = argmaxc T X,.c. (17) with respect to P at the point (Pc,ccT) is the linear op-
C erator given for any matrix Z by

Note that the feedback gain K,. does not depend on the
initial condition zo, but the Lyapunov solution Xc. does. Dg, (Z) = (A - bKW)T Z + Z(A - bKc). (28)
Therefore, the solution c* is a function of z 0 . However,
this dependence on zo can be removed if we start with Since KC is stabilizing, the operator Dg, is nonsingu-
the assumption that zo is a random vector with known lar by Lyapunov's equation. Therefore, from the implicit
mean m and covariance C and the objective in (4) is an function theorem (see, e.g., (21, pages 375-380]), there ex-
expectation over xo. In that case, X,. is the solution of ists an infinitely differentiable matrix-valued function %Y
(14) with xozTo replaced by C + mmT. such that

I Our ultimate goal is to find c" in (17), but we must first PC =(ccT). (29)
prove that such c* always exists. To do that, we define Thus, P, is continuous in ccT. 0

the mappingf: eE -- E O,
f(e) =Theorem 2 (Brouwer's Theorem) Let C be a corn-

pact, conver subset of 1R1. Then any continuous function
_ argmaxc T Xc, (18) f : C -- C has at least one point c* such that f(c') = c*.

where Xe satisfies the Lyapunov equation associated with

e as in (14). It was shown in (15] that the solution of (18) The existence of c' in (17) can now be guaranteed by
is given by the following theorem.

I•= TA-½f +oC EeO, (19)

where Theorem 3 (Fixed Point) The mapping f defined in(18) is continuous in i and it has a fired point.

R = TAT T  (20)

i = ((2 - A)-13 (21) Proof of Theorem 3 First, we need to show that the

max A (1]) (22) mapping from E to Xe is continuous.i ~~ ~ [• -POx _lT Q•

(2 = R- IXR- (23) 1. Let c = E in (12) through (14). By Lemma 1, P, of
(13) is continuous in cT. Since each element of ýeT"

6 = -RixIo, (24) is simply a product of elements from e, & T is contin-
1b = (0:(6 - BC)T R(O - BC) = I} (25) uous in •. By the continuity of composite functions,

(06 is the boundary of 0.) Therefore, the mapping f con- PF is continuous in e.
sists of two parts. First, it takes the given 6 and produces 2. Kc of (12) is continuous in Pe, thus it is continuous
X, via equations (12) through (14). Then ý is given by in c.
(19).

To show that c" exists in (17) is equivalent to showing 3. By the implicit function theorem (similar to the proof
that a fixed point c' exists for ,of Lemma 1), Xe is continuous in KE. By the con-

tinuity of composite functions, X, is continuous in

f(c) = c. (26)
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Second, we need to show that the mapping from X. to 0 0]

is also continuous. This section can be sumrinarized as follows: a fixed-
point solution c" exists for (10) and the solution to the

1. Both el and jl in (23) and (24) are continuous in Xe. minimax problem in (5) is given by (9). We now turn toSince each eigenvalue of a matrix is continuous in the computation of c'.

the elements of the matrix (see, e.g., [10, pages 191-

1921), A in (22) is continuous in Xý. Thus, by the
continuity of composite functions, A is continuous in k P ,

C.2

2. Each element of (!Q - A!)-' is given by its cofactor
divided by det(Q)-ýI). The cofactors and det(!t-•I) I3
are sums of products of elements of Q2 - AI. Thus,
(0 - il)-` is continuous in a, which implies i in
(21) is continuous in e also. (Exception is when D2- I
3I is singular, which is treated in [15]. However,
continuity is not affected.)

3. 6 in (19) is continuous in a. I
Therefore, the mapping f from Z to E is continuous, and N =4
by Brouwer's Theorem it has at least one fixed point. 0 i Figure 1: Candidate points used in calculating 4.,., and

The existence of a saddle-point solution for the mini-
max problem in (5) is stated in the following theorem. 3
Theorem 4 (Existence) There exists at least one
(u',c') such that (7) is true and the minimax problem 4 Fixed-Point Computation
in (5) has a saddle-point solution. If there are more than I
one (u,c) which satisfy (7), then their associated LQR Before describing our simple heuristic algorithm, we
costs must be equal and any one of the solutions is equally should point out that there exist many algorithms to Ivalaid. compute Brouwer fixed points (see e.g., (1] and [24].)

Although these algorithms can guarantee that the fixed
Proof of Theorem 4 From Theorem 3, we know that points will be found, they are known to have combina-
(10) has at least one fixed point. Therefore, (7) has at torial complexity. In comparison, we have no guarantee

least one saddle-point solution. To show that two fixed that our algorithm will converge, but in many cases that
points of (10) must have the same LQR cost, assume that we have tried, it usually converges in less than 10 itera-

there exist (u1 , cl) and (u2,c2) such that tions.
The goal of the iterative algorithm below is to find E)

J(u,,c) < J(uii) <_J(u, ,), V u, c (30) such that the distance between 6 and 'k = f(ek), as de-

and fined in (18), is small, i.e., a fixed point. Given 4k and 4..
J(u 2, c) < J(u 2 , c2) :_ J(u, c2), V u, c. (31) at the kth iteration, steps 6 through 8 below are designed

to find Ei.+, and 6k+.- The algorithm accomplishes this by
Then let c = c2 and u = u2 in (30), we get doing a local minimization over a set of candidate points,

Uj, C2 )J(UlCO5-J(u 2 , CI) J(U2 , C2 ) (32) i = 1,...,NJ. Let {p,, i = 1,...,NJ be N -1 I
equally-spaced points between Zk and 4, with P =I

or (see Figure 1). Vectors are then drawn from O0 to each
J(u,c0) !5 J(u 2 ,c2 ). (33) Pi, until they intersect Oe at points {1 ,, i = 1.. , NJ,

Similarly, let c = cl and u = ul in (31), we get where

J(U2 , c) S J(u 2 ,c2 ) <_ J(u1,c 2 ) < J(uj, cI) (34) W= 7w +C (37)

or -wTRw (38)

J(u 2 ,c 2 ) S J(ul,cl). (35) Pi - O . (39)

Therefore, (33) and (35) imply liA - O•112 I
J(ui,c) = J(U 2 ,c 2 ). (36) Next, we compute = f(fi,) in step 7. After comparing
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" the distances Pi - P 112, the pj and j~i with the minimum
distance become ck+1 and cI,+t, respectively. 12

A Heuristic Algorithm

1 Define the mapping f from c to C:
compute Xe in (18) using (13), (12), and (14) then
compute ý using (19);

Figure 2: rwo-macss-one-spring system.I2. k - 0;

3. Let cl be a random point on eb; The initial condition is r 0 = [I -1 0 0 ]T, which
. Cmeans the masses are displaced toward each other. For

Ithe ellipsoidal set in (3), we use 0, = [ 0 1 0 1 1'

5. k - k + 1; and R = I. Thus, the output y is nominally the sum of
the position and velocity of the second mass, but c can

6. Compute {/5, i = 1,. , N} on Ob using (37); still be anywhere within the unit ball. We choose r = 1 in

the objective and N = 4 in the fixed-point algorithm. For7. Cmpue/5 =/(i) or = 1... N;the stopping criterion, t = 0.001 is used. The algorithm

8. Compute converges in 5 iterations.

j = argm nin Ii - Pi112  (40) Table 1 shows the cost matrix for this example, where
then CLQR is the element in E which maximizes the cost for

u = ULQR(Oc). As expected, the control u = uLQR(O()Ik+l = P, (41) applied to c = Oc gives the lowest cost for this control,
ek+l = /j; (42) 5.6, but its cost can be quite high at other c's such asCLQR and c*. In comparison, the control u = ULQR(C)

applied to c = Oc gives a slightly higher cost (but this
9. If II6k~l - ck+tll 2 > e., go to step 5. may not be the lowest cost for this control as it is likely

that another c achieves the minimum) while keeping the
Note that there is no guarantee that 11ck - e4k 2 < maximumcost to 13.4, as compared to amaximumof 17.1

14I+ - ek+1112 , so we don't have a convergence proof for for u = ULQR(OB). Therefore, this example illustrates that
this algorithm. However, with c = 0.001, this algorithm by giving up some performance at the nominal plant 06,
usually converges in less than 10 iterations. we gain some performance back for other plants in the

set.

5 Example C = O C = C-- C ý--C

IU =UfjQJ(Oj I 5.6 I 17.1 16.9
We will use the two-mass-one-spring system described in U= ULqR(C°) 7.3 13.3 13.4
[4] in our example. This system, shown in Figure 2, can
be represented instate-space form as

e rTable 1: Cost matrix for different u's and c's.
X1 0 0 1 0 lrX,
i2 0 0 0 1 X2

f [ k ] Conclusion
S0

+ I (43) time plants whose uncertain parameters in the output
Smatrix are known to lie in an ellipsoid.it set. This de-

sign problem is posed as a minimax problem, where the

S= rX (44) control and plant uncertainty can be viewed as strategies
employed by opposing players in a game, in which the

where x and r2 are the positions of masses 1 and 2, and control is chosen to minimize the LQR cost and the plaia
Z3 and Z4 are the velocities of masses l and 2, respectively, uncertainty is chosen to maximize it. Without restricting
We use masse8s m = m2 = 1 kg and spring coefficient the form of this minimax control, we proved that it is the
k = I N/m for this system. LQIR control for one of the plants in the ellipsoidal Nt
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3 A Robust Control Design for FIR Plants with
Parameter Set Uncertainty

I MING K. LAU* t STEPHEN BOYD* ROBErtT L. KOSUTt GENE F. FRANKLIN"

I Abstract This paper proposes a method of computing applied. At time k + 1, a new minimization problem is
the finite-horizon control inputs for FIR plants whose pa- solved. This approach of control application is the same
rameters are only known to lie in a set. The parameter as the generalized predictive control described in [5] and
set is assumed to be described by an ellipsoidal bound, [2].
which could be provided by some identification scheme In this paper, we choose to work with finite impulse
with a parameter set estimator. The finite-horizon con-
trol obtained minimizes the maximum LQR cost from all response (FIR) models for the plant with the assumption
plants with parameters in the given set. The computation that they are accurate models provided they of sufficient
of this robust control is shown to be a convex optimiza- lanths. Our goals are to show that thel I tion problem, thus global minimization is guaranteed and plant is stable.) Our goals are to show that the above

tio poblmths gobl iniiztin i garnted ndminimization problem is a convex optimization problemmany efficient methods are available to compute the min- nd to design an algorithm to compute the minimizing
imizing control. In addition, the method can also be used anto in order to solv e the minimiza p l
to compute the control for the dual problem in which the control. In order to solve the minimization problem, a
plant parameters are known but the initial states of the constrained maximization problem must also be solved.

plant are assumed to lie in a set. The procedures of which ate given in the Appendix. We
will also show that the same algorithm can be used to
compute the control for the dual problem in which the
plant parameters are known but the initial states of theS 1 Introduction plant are assumed to lie in a set. The paper is organized as
follows, after stating the problem in the next section, weI A problem of great interest in control theory is the design will show convexity in section 3 and outline the algorithm.

of a controller which can guarantee some level of perfor- The dual problem of uncertain initial states is considered
mance in the presence of plant parameter uncertainty, in section 4. A numerical example is given in section 5.I Kharitonov's theorem provides a necessary and sufficient Some concluding remarks are given in section 6.
analysis test for determining the robust stability of poly-
nomials with perturbed coefficients, however, there are
few results that exploit Kharitonov's theorem for synthe- 2 Problem StatementI sizing robust controllers, e.g., [4] and [10]. Another ap-
proach to this problem is to define a set of nominal values
of the uncertain parameters and consider deviations from We shall consider a discrete FIR plant

* these nominal values. A comprehensive survey of the dif- y(k) biu(k 1) + +.. ..mu(k - m) (1)
ferent parameter space methods, as opposed to frequency = bT
domain methods, can be found in [13]. "(k)

Motivated by recent work from [115, [125, and [15, where where y(k) and u(k) are the output and control of the
the identified plant parameters are described by ellip- plant at time k, respectively, and
soidal sets, we pose the following problem: given that
the plant parameters are known to lie in an ellipsoid, find 0 = bl 62 ... bm ] T3 the finite-horizon control which minimizes the maximum 0(k) = u(k - 1) u(k -2) ... u(k-m)
LQR cost from all plants with parameters in the given
set. At time k, this minimization produces the control The parameter vector of the plant, 0, is assumed to be in

* vector [u(k) u(k + 1) ... u(k + N)], but only u(k) is a set,

U Information Systems Laboratory, Stanford University, Stan-
ford, CA 94305. 0 E E _{ : (0 _ orr(o - < (}t Supported by Sandia National Labs' Doctoral Study Program.

l t Integrated Systems Inc., 2500 Mission College Blvd., Santa
Clara, CA 95054 and Information Systems Lab, Stanford University.
Research support from AFOSR under Contract F49620-890C-0119. in the parameter space with its center at O0. The matrix

I' gives the size and orientation of the ellipsoid, i.e., the
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square roots of the reciprocals of the eigenvalues of r 3 Robust Control Design
are the lengths of the semi-axes of the ellipsoid and the
eigenvectors of r are the directions of the semi-axes. We will solve the minimax problem of (6) by showing that

The plant in (1) can also be represented in state space it is a convex optimization problem. Note that since uTu

format, is not a function of 0, we have

S+ 1) = Ax(k) + bu(k) (3) u = argmin[JI(u) + J 2 (u)) I
y(k) = cx(k) (4) where

where Ji(u) = puTu (8) 1
0 0 o ... oJ 2(u) = m(9)

1 0 0 -- 0 1IE1 0 0 - 0 We can express y as =A= 0 1 0 .. 0 ,b= 0 y=UO

0 i "1where

F u(-1) u(-2) .-- u(-m)
and u(0) u(-1) ... u(-m + 1)

c-I b b2 --. bin ] T0 T U- U(1) "

Thus, the states of the FIR plant are u(N - 1) u(N-2) u(N-m) j
x(k) = [ u(k - 1) u(k - 2) .-. u(k - m) ]T _ qb(k) We now state and prove the following corollary, which

states that the maximizer of (9) always lies or the bound-

Due to past disturbances, the states at some time k0 are ary of e. I
displaced to q5(ko) = 0o : 0, so y(ko) 0 0. Without loss
of generality, we let k0 = 0. We now define the control Corollary 1 Let 11112 denote the Euclidean norm, i.e.
and output vectors X1I

A
U = [ u(O) u(1) u(2) ... u(N) jT For a fi|ed matr U,

Y [(0) y(l) y1(2) ...y(N) ]Tf(0) T= 1U0811

and the quadratic cost function is convex in O and

JAT. ._ , (5) MaX olU0ll = max llU8112 (10)
+EeO

where p is a weight to trade control effort for regulation. where I
The problem is to find a control which minimizes the cost e={0 :(0 -b)Tr(0.o- )1} (11) I
function for the worst possible plant in E, i.e.,

u =-argmin maxJ.) Proof of Corollary 1 Let a c [0, 1], then

u ksV / f (o0i + (1 - a)02) - otf(0o) - (1 -a)f(02)

Thus, u is designed to be robust with respect to the = IU(Aai + (1 - a)02)ll] - • IlU01 ll] - (1 -1) IJU02l 2
parameter set uncertainty given in (2). Note that if there = -0(0 - a) I1U(0 1 - 02)1 2
were no parameter uncertainty in the plant, 0 = 0,, then < 0
(6) becomes = arg min Jo (7) Thus, f(O) is convex in 0. Now let 01, 02 E Eh, then

which is the standard finite-horizon linear quadratic reg- f + ( - :• O(01) + (I- a)f(02 )

ulator problem. The optimal control in (7) requires the Since the graph of f(0) along the line segment joining
solution of the discrete Riccati equation, which can be any 01 and 02 lies on or below the line segment with its
found in texts such as [7, 21. ends at f(O1) and f(02), (10) follows. (A different proof
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I
of the maximum occurring on the boundary can be found
in [141.) 0 100

Thus, the maximizer of (9) is given by 90

0* =arg maxIlU~ll• (12) 80
I EO&

70-

Theorem I The functional 60.

J(u)= JI(u) + J2(u) (13) so ., %

is convex in u. 40.

U 30 ~ J2 T~~66

Proof of Theorem 1 We express y as
20-

y = BI(O)u + B2 (0)0. (14) 0."
I0 ....

where 0 . .. .-

o0 0 0 ... ... 0 0 -6 -4 -2 0 2 4 6

b6 0 0 ... ... 0 0 u
b2 b, 0 ... ... 0 0

I B()= bi. .. -. "Figure 1: J and J 2 as functions of u.

following simple example. Consider the case where m = 2
0 0 0 and N = 1, so 0 = [b, b21T and u = [u(0) u(l)]T. Since

L bm bin-I b, 0 y(1) does not depend on u(1), we have u(I) = 0 and can
consider u = 4(0). Let 0 be the set of points which lie

bt b2  ... bn.-i b. on the line segment from 01 = [0.5 - 1]T to 02 =[1 IT,
b2  63 bm 0 and 0. = [-1 1]T. As shown in Corollary 1, for a given

b3 ." bm 0 0 u, the maximum of yTy must be at either endpoints of 0,

bm "J 2 (u) = max(y'yl,. y,

( 0 0 --- 0
0 0 .... ... 0 Figure 1 shows that for this example, there are two points

where J 2 (u) is not differentiable. Also shown in Figure 1

0 0 ... ... 0 is J(u) with its minimum at u" = -0.4.

a[((- Since J2(u) is not differentiable for all u, we choose not

u(--1) u(--2) ... u(-m) IT to use the usual descent methods to find u*. Instead, we
will show that we can easily compute a subgradient of

Then J(u) and apply the ellipsoid algorithm described in [3,

* yTY. TBTB 2 (#TBTBiu+- UTBTBiU (15) pages 324-3321.y ~= OTB2 B20.+9. +l~ TJI

We first give the definition of a subgradient. If J
The first term on the right-hand side of (15) is constant Mpj+l -- ]R is convex, but not necessarily differentiable,
in u, the second term is linear in u, and the third term then g E RNV+1 is a subgradient of J at u. if
uTBTBlu = IIBIUtI1 is convex in u by Corollary 1. Thus,
yTy is convex in u for each 0 E e. Since the maximum J(u) > J(u 0 ) + gT(u - u,) for all u
of a set of convex functionals is also convex [3, page 131],I 2(u) is convex. By Corollary 1, Jj(u) = pIlufll is convex The set of all subgradients of J at u. is denoted by

also. Since the sum of convex functionals is convex 13, 8J(u.), the subdifferential of J at u.. The following two

page 131], J(u) is convex in u. o facts from [3, page 300] will be used.

With Theorem 1, we are guaranteed that there is a 1. Since Jj(u) and J 2 (u) are convex, any subgradient of
global minimum solution for u* and many efficient meth- the form g = g, + 92 is in aJ(u), where g9 E 8.4(u)
ods are available to compute it. However, we want to and 92 E 0J 2 (u).
point out that although J 2 (u) is convex in u, it is not dif-

ferentiable for all u. We will illustrate this point with the 2. Let yry from (15) evaluated at 0* from (12) be de-
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noted by initial states of the plant €o is assumed to be in a set
similar to (2),

J2 (u, 0) = OT. BT(O*)B 2 (O )iO + 20T BT(O*)B,(O*)u

+uTBT(O*)Bi(O')u (16) Oo E 4 ' {0.: (0. •0)rr,(o. -- o,) < } (18)

Since yiy is convex in u for each 0 E eb, g2 E The problem posed in (6) now becomes

aJ 2 (u,0*) implies g2 E aJ 2 (u). In the event that . argrminaxJ. (19)
there are more than one maximum, we only need to #.xt
pick one. = argmin puTu + maxy T y]

Thus, from (8) and (16) the subgradient of J at u is given I
by Note that yTy from (15) is convex in 0. for a given u. This

means that the maximum of yTy lies on the boundary of
g = 2pu + [2BT(O*)B 2 (0*)o + 2BT(O*)Bi(O)u] (17) 4ý, 6b. Furthermore, using the same arguments from the I

proof of Theorem 1,

The computation of 0* is not difficult, but the deriva- JO(u) = puTU + max yTy
tion is rather long. To avoid breaking the flow of this sec- .o ',

tion, the method of finding 0* is given in the Appendix. cn
The ellipsoid algorithm for computing u* E IRK is as fol- can be shown to be convex in u. Therefore, all we need

lows: to show is that we can compute a subgradient of J4(u),

g# = 2pu + 2BTBlu + 2BTB 2 .* (20)

1. Select any ul and El such that u" is in the initial
ellipsoid, where = arg

U* E I{U: (UUi)T E,1(u -)} From (14), we have

2. k ,-- 0; arg max [IB2 0o + BluI2
3. k--k+1;

This is similar to the form of (12) except that we have
4. Compute any gk E aJ(uk): the extra term Bu. Thus, if we solve for 0* with

(a) Compute z* from Theorem 2; q = - (B 2 0c + BlU)

(b) Compute 0* from (31); in (29) and replace r and 0. of (2) with Fj and 0, from 1

(c) Compute gk from (17); (18), we have

5. Compute new ellipsoid: 0; 0

Therefore, u* in (19) can be computed by the same ellip-- k soid algorithm given in Section 4, where the subgradient

VfgTEkgk is now computed using (20).
E__ I

Uk+2 K+ 2 5 Numerical Example
E+ -- 1 (E K / 1

For our example, we use a 10-tap HIR plant, i.e., m = 10.
The control vector u has N = 10, so if u = 0, the output

6. If EgiEgk > c, go to step 3. will be zero after 10 delays, y(1O) = 0. The parameter

ellipsoid E in (2) is a 10-dimensional ball with a radius
The stopping criterion in step 6 guarantees that on exit, of 5 and center at 0.. 08, plotted in Figure 2 with the
J(uk) is within c of J(u*). '+' symbol, is the first ten terms of the impulse response

from the transfer function I
10z(z + 0.7 cos(rt/4))

4 Uncertain Initial States Z2 - 2(0.7) cos(ir/4)z + 0.72

The initial state of the plant,
In this section, we will consider the dual problem in which

the parameter vector 0 of the plant is known, but the x(0) = [u(-1) u(--2) ... u(-10)]T
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Figure 2: Plant parameters: - 0,x - 02, * - 03, and Figure 3: Controls: x - uLQR and * - u'.
* + - 0e.

O1 02 03O c 0
is scaled such that 1I1(0)ll 2 = 1. =0 1 306 902 1 1136 837

Using p = 1, we will compare the cost J in (13) as- u2 = ULQR 1 587 1031 785 403
sociated with three controls, ul = 0, u2 = ULQR, and u3 = u" 655 632 697 437

m u3 = u,, where ULQR is given by (7) with 0 = 0,. The
controls ULQR and u* are plotted in Figure (3), where
IluLQRI1 2 = 2.63 and ]u*]2 = 1.58. We now define three lable 1: Cost matrix for different u's and O's.

plants from E),
t rthe finite-horizon control to minimize the maximum LQR

ii arg max (J. =, i = 1, 2, 3 cost from all plants with parameters in the given set is
e~e

a convex optimization problem. An algorithm is given
They are the worst-case plants for their associated con- to compute this minimizing control. Although the algo-
trols and are plotted in Figure 2. Table 1 shows the cost rithm can also compute the minimizing control when the
matrix, C, for the different plants and controls. We make plant parameters are known but the initial states of the
the following observations from C: plant are in an ellipsoid, it would be desirable to mini-

mize the maximum over both parameter and initial state
1. For i = 1, 2, 3, C(i, i) is the largest in each row, as uncertainties simultaneously. Furthermore, we would like

the Oi's are chosen that way. to extend our method to the infinite-horizon case for in-
finite impulse response (IIR) plants. These are areas of

2. ULQR has the lowest cost for 0,, 403, but only 8% our current research.
lower than u*.

I 3. u" has the lowest maximum cost, 697, 48% lower
than the maximum cost from ULQR and 87% lower 7 Appendix
than that from u = 0. Thus, the robust design per-
formed as expected. Given the following matrices,

U E -(N+x(21)

F E -mxr, F= FT > o (22)

6 Concluding Remarks 0,O0 E lRm  (23)

we want to find the maximizer 0* in (12). This is similar to the Ic,-st
squares problem with quadratic and linear constraints, which was

We have shown in this paper that given that the FIR. investigated in (81 and 19]. llowevf,., we are seeking a maximizer as
plant, parameters are known to lie in an ellipsoid, finding compared to a mininimizer.
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I
Since r is symmetric, we can diagonalize it by a unitary matrix, Theorem 2 Let A* be the largest ,igenvalue of M, then there are

r = TATT two possible cases for the marimizer of (S0):

where A is diagonal with cigenvalues of r and the columns ofT are I. If A is not an eigenvalUe of 0, tAen z* = (Q- A I)-'p. I
cigenvectors of r. We now transform 4b in (I1) to the unit ball, 2. If A' is an eigentalue of (1, then let v = (Q -)A*I)tB, where

B = Z = 1} (24) t denotes the pseudoinverse, and

where (a) If z = L satisfies (32) and (33), then z" = v.

z= A2TT( - 8c) (25) (b) f z = v satisfies (32) and LT,, < 1, then z" = v + C is

Substituting one of many solhtions, where ( is an cigenvector to the
0 = TA- z + O (26) eigenvalue A\ of fl with (T< = -T.

into (12), we have

x. = arg max liD- - q1j2 (27) Proof o. iheorem 2 In [9], the minimization of (30) was an-
,r,=, 2alyzed. Due to Corollary 2, we can apply all the results from [9] by

where replacing the smallest eigenvalue of M with the largest cigenvalue.

D = UTA- (28) t U
q -U6, (29)
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Statistical Analysis of Least-Squares Identification for Robust Control
Design: Output Error Case With Affine Parametrization

Robert L. Kosut* Brian D. 0. Andersont
Integrated Systems, Inc. Dept. Of Systems Engineering

3260 Jay St. The Australian National University
Santa Clara, CA 95054, U.S.A. Canberra, ACT 2601, Australia

Abstract Precise, finite-data statistical propereties are de- (a3) The unpredictable sequence e is zero-mean gaussian i.i.d.
termined using a. least-squares estimator based on an output with unknown variance A,.
error model with an affine parameter representation where the
true system is of output error form, but is not in the model set. (a4) The input sequence u is deterministic, hence, indepen-
The purpose of the analysis is to show the effect of unmod- dent of e.

eled dynamics on the resulting closed-loop system designed
on the basis of the estimated transfer function. This simple It is important to emphasize that none of the parameters that
problem set-up is prototypical of the interplay between system appear in the above assumptions are assumed to be known;
identification and robust control design. they are only known to exist. Hence, there is no quantitative

a priori knowledge about M, p, or A.

Introduction The above qualitative assumptions do, however, impose
varying degrees of restrictiveness. Assumption (al) imposes

The problem addressed is the following: given a finite col- an LTI structure, which by itself is not necessarily restrictive,
lection of sensed sampled input/output datafrom an unknown however, the output error form is very specific. This latter
system, what level of confidence can be assigned to a feedback restriction, together with the gaussian assumption (a3) makes
controller design or modification. the statistical analysis easier without resorting to a central

limit theorem or a law of large numbers. Assumption (a4) im-

To make the problem both representative and analytically plies that the system is operating in open-loop, for otherwise
tractable, the following a priori qualitative data is assumed: u would have a component which is correlated with e.

(al) The system which is generating the data is a discrete For control design it is desireable to obtain an estimate
linear-time-invariant system in output error form, i.e., of G(z). It is standard practice to form a parametric model

G(z,8) and estimate the free parameter 0. Although many
yt = (Gu)t + et (1) parametric forms are possible, e.g., [4], for ease of analysis we

where t is the sampling time, u and y are the sensed choose the following offine FIR paramtrization:

input and output sequences, respectively, and e is an un-
predictable output disturbance. The operator G is linear-
time-invariant with unknown transfer function G(z) and G(z, 0)- E 0kZ- (4)
corresponding impulse response sequence g. Thus, k=1

00

(Gu)t = _gkutk (2) Thus, the problem is to estimate the first n impulse response

k= coefficients {gi,...,g4}. Although we specialize to the FIR
modeling case, all the results apply mutadis mutandis to any

(a2) G(z) is stable, i.e., all the poles of G(z) are strictly inside other affine model of G(z), e.g., Laguerre or Kautz models as
the unit circle. Hence, there exist positive constants M :_ described in [5]. The essence of the problem addressed here
I and p < 1 such that is, in our opinion, the motivation for the work described inIg__ _ _ _ _ Mpk-l, Vk > 1 -3) the recent special issue [61 on system identification for robust

-_ _control design. In comparison with [2], the smoothness pa-
"Supported by AFOSR, Directorate of Mathematical and rameters M,p are not estimated by modeling the tail of the

Computer Sciences, Contract No. F49620-90-C-0064, NSF impulse response {g,,+l,gn+2,...) as a random variable. Our
U.S./Australia Cooperative Research Program, Travel Grant INT- attempt here is to precisely determine the effect of the un-
9014152, and the Australian National University as a Visiting modeled dynamics, i.e., the tail of the impulse response, on a

FewI'Supported by the Cooperative Rer-rarch Center (or 11ohust and least-squares paraineter ,•stiinator, wvithout aniy further prTior

Adaptive Control w•SltnIII t ions.

I



1

Least-Squares Estimation When /6 = 0, it is well known that & and 5ý are the maximum

likeihood estimates of c' and A,, respectively, e.g., [I]. In our

In this section we use least-squares on the measured data to case, /6 0 0, and its effect on the estimates is the subject of

estimate the first n impulse response coefficients {91, 92.... ) in the next section.

(2). Towards this end, the unknown impulse response param-
eters {g(,-.,9L) are partitioned into the (finite) parameter
vector to be estimated, Statistical Analysis I[ 91 1In this section we analyze the effect of the nuisance pa-

a = I E 11ft (5) rameter j6 on the estimates a and !a of a and A,, LespeC-
S.ntively. We use the standard notation AI(p, E) to denote a

gaussian distribution with mean u and variance E. Like-
which consists of the first n impulse response coefficients, and wise, X 2 (m) denotes a chi-squared distribution with m de-
the (infinite) parameter vector grees of freedom. Recall that if q E R"' is drawn from

Af(O,R' with R non-singular, then q'R-q E x 2 (m). We
g"+ll also usc x2 

((m, r) to denote a non-central chi-squared distri-
gn+2 E 1R°" (6) bution with m degrees of freedom and non-centrality parame-

ter r. To fix the definition of the non-centrality parameter, if I
q E HL' is drawn from Af (p, R), then q'R- q E X2 (M, r) with

which is the remainder of the impulse response. These paxam- r = p'R-'1 s. From [3], we also use: as eitheri m or r - oo,
eters. - the "tail" of the impulse response, {gn+1,9n+22,.. } x2 (M, r) - Af(m + r, 2m + 2r)). Hence, x 2 (m,0) = X 2 (m)
- can significantly bias the estimate of the "head," namely, and as m -_ 00, x2 (m) -- Af(m, 2m).
{gi, . .. , .g.). Statisticians refer to 8 as a "nuisance" parame-.
ter. Note that because G is stable, 1101 is not only finite, but It is convenient to dcfine ;,e "covaniance" matrices,2

decreases exponentially as n increases. That is, using (3), E -, = 1X'X E I -- (14)

___ I
11,611 2 = 1: (7) Y 2  I'i R' ~ (5

k=n- 
N

Using the definition of a and /0 together with (1) gives, E (16' 1
Y = Xa + Xfi + E (8) Observe that only Ell can be formed from the data and by

where assumption is invertible.

Y1 I The following theorem describes the distributions of the key

Y IN, :IE 1 v 9 ragtdom variables.Y = " jN, E- y E 1K N (9) Theorem I Define the parameter error,

X = ' " E ULMNxn ("O) and the output error,

U- Un-u- .-. "" Under assumptions (al)-(a.4),1
= U...,1 (i) The parameter error a and the residual are indepen-

UN-n-i '"N-n-2.-- dent and normat4y distributed as follows:

Assuming that X'X E Ia.n is non-singular, i.e., u is persis- A
tently exciting of order n, the least-squares estimate of a is ( e Af 5- 2 /3, 21.. 1) (19)

given by the well known formula: E A /. X, A-r) (20)

= 1 = arg min flY - X8112 = (X'X)-iX'Y (12) where r E IRN xN, given by,

gn r = iE - x(x' x)- 1 x' (21)

where ({k 1 : n ) can be thought of as estimates of has rank N - n and is idempotent, i.e., r = r
2

.

(9k j k 1 :n. We also take the estimate of Ae, the out- tIt cns be shown that this result is also tnru if bodi "t or r 0oo.

put error variance, aws the sample-variance, 2
Although ihe miatrices •S2, E22 are infinite dimensional, they

S1 always appear inmltiplying P-. lence, these ter,,s are bounded b~e-
• = ,-- II Y of (13) cause the e-,,nts illt l deray exponentially.
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(ii) ' and g have the following non-central chi- The asymptotic part of the above Iheorem leads to the Gollow-
squared distributions: ing:

N E X2 (N N ) (22) Approximation 2 For sufficiently large N, if u is white, i.e.,

N \ N -(30) holds, then with high probability:(l- E x (23) z:
• ':1, E x , • (23) .X X + X. 11,9112 (34)

where ij•112 < 3n A. (35)
- N A

= -11 17 1 213 (24)

) As0N-' (E2- xE'12  ) 1(2)Large N and High Probability
(iii) As N -- oo,

A(A 2+b (A+ 2 6 )) (26) When the input is white, "large N" can be taken as,
N_ 2An 2(1 + 2qX) 11,611 2

' - n +' y " + 2-y)+2)) (27) (1+t)2' '= A-(36)

where q is the ratio of the energy in the tail to the output
The results in part(i) follow directly from the underlying as- error energy. Typical values of N, e.g., 500-1000, will always
sumptions and definitions of the vai.ables, and except for the be well in excess of variations caused by q. Moreover, from
non-zero bias terms, are standard, e.g., [1]. Part (ii) is non- central and non-central -chi-square tables (e.g., [3)), values of
standard, in that the error statistics involve non-central chi- N > 100 and n > 20 make the normal approximations very
square distributions. These results are obtained by direct ap- accurate. In consequence, "high probability" is i. excess of
peal to the relation between a normally distributed random 99.95% for typical data lengths and model orders. Similar
variable and the non-central chi-squred statistic as stated in numbers hold for the general case with a non-white input.
the introduction to this section. The asymptotic results in
part(iii) follow from the asymptotic normal approximation to
a non-central chisquare distribution as stated in the introduc- Frequency Response Estimation
tion to this section.

In part (iii) of the theorem, the asymptotic variances decay The results of the previous section can be used to analyze

as 1/N. Hence, for sufficiently large N, the random variable the errors in frequency response estimation. Towards this end,
approaches the mean with high probability. This leads directly express G(z), the true transfer function as,

to the following: G(z) = D(z)'a + D(z)'# (37)

Approximation 1 For sufficiently large N, the following ap- where

proximations hold with high probability, Z Z- [ l

Aý A•+b (2R) D(z)•- D)(z) = z-(n+2) (3S)
SN•+•(29) Z -n

Let G(z) denote the transfer function estimate of G(z) defined
Observe that for large N, the variance estimate Aý tends to as
over-estimate the true variance A,:. In addition, the errors ; (&(z) = D(z)'3 (39)
and Ae - A,, are driven by the "nuisence" parameter 0, i.e., where 3 is the least-squares parameter estimate from (12) of
the tail of the impulse response. the the first n impulse response coefficients of G(z). Let A(z)

A special case of interest is when the input u is white, i.e., denote the transfer function error defined as,

El Al . I,, ,12 = 0, E22 = A,. I,. (30) A(z) G(z) - 15(z) (40)

Theorem 2 If u is white, i.e., (30) holds, then: wher(
where

Nv3,E y ~ 2(Nf N U 1,612 (1 _,A
A,, '\x D(z)er -=' g=)Z+ gs (42)

A 2 () (32) k~l

with ; the parameter error from (17).
In addifion, a.i N -+ oo,

From 'T'hcorem I the followig result is obtained.
2,\, (A -2A,~ ( . 11i0II)' (33) ,N. • •V" A, t A,, ]l -e- Thie r inn 3 'he, f,,ll,,,,•tvirq ,,..+,;0ts hold (it ,',,a, ih furq,,c, cy w.
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I
(i) Normal distribution (iii) Asymptotic Nc, enlity

As N - oo,Ae)l

A(c') E Af e ,, D(eP,.)) (43) AAN(e 2 
- Af I -ie (w), 2(1 L -,(w))) (52)

F(z)' = D(z)' D D(z)'E1-1- E 12 (44) Part (iii) together with Approximation 2 leads to:

(ii) Non-central chi-squared distribution

Approximation 4 If u is white, i.e., (30) holds, then for
e) , x- (1,E(w)) (45) sufficiently large N, the following approximation holds with
D i high probability at each frequency w:

with non-centrality parameter, I
12 n A c e ID1

C(w - ) (46) DAe+) D)e (53)

(iii) Asymptotic Normality Robust Control Analysis
As N -* oo,

In this section, we use the asymptotic frequency domain
IX(e) .-- A((1 + c(w), 2 (1 + 2c(w))) bounds to evaluate controller robustness. The goal of controlN I

- (ei")*J'D(eiw) is to reduce the output variance. Consider the LTI feedback
(47) controller

u = -Ky (54)

Part (iii) leads to the following result, where K stabilizes the "estimated" FIR system

Approximation 3 For sufficiently large N, the following ap- yGu+e G(z)A= gkz-k (55)
proximation holds with high probability at each frequency w: ==E

IA(e ) 12 ;Z: D(e'I')'r•D(e'w) + IF(ejw)',12  (48) Applying the control (54) to the actual system (1) yields the
N closed-loop system

Observe that if u is white (30) then Ty = e, u=- . e (56)

D (e j) .• .•D (e ,w) = D (e ,) .( + .- l ,) D (e, -) I + Q I+ Q A

where

D(,e,,)D(,) - -= (57)

This leads to the following: I
with A the estimation error as defined in (40). Since the

nominal system is stable, it follows that A, T, and Q are stable
Theorem 4 If u is white, i.e., (30) holds, then at each fre- transfer functions. Hence, the closed-loop system is stable if
qtncy W: and only if,

(i) Normal distribution 11 + Q(e'')A(e'"W )I > 0, VlWI <_ r (58)

If this holds, then the spectrum of y, under closed-loop -not

A(e'") • .I/" •?(e H '), () during identification- is given by:

(ii) Non-central chi-squarcd distribution 4b(D ) = -f(e'") - 2, (59)

IA(e'" )12 E 2 X2(1 )) (50) 1 + O(r'")Ae'")
( -__ A,_

with non.ccnlrality parameter Suppose that u, during identification, is whitc. i r., (30)
holds. To establish stability, observe that a sufficient condition
for stability is that,

S(51)
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Using the expression for IA(c')l in Approximation 4 and sub,- The above bound gives an indication of the trade between
stituting for A, from (34). it follows that for large N, the bias and variance wa thie model order varies - all results being
closed-loop system is stable, with high probability, if, valid for data length N > 500 with probability in excess of

iQ(e'11 2 31t 11/3112 < 1, V9W9 9
I (61) Concluding Remarks

Hence, using the large N approximations, with high probabil-
ty, the output spectrum is bounded as follows: Using an output error linear plant, we have shown that

.,T(e,,)12 (j _ 11112) with gaussian noise and affire models, there is a very rich|___ ____ __<_ ___ structure in the analysis of standard least-squares estimation

1- Q(e"w)l [• (•--- II~ii) + im]i'j2 of the first n impulse response coefficients. The remaining
A. -) coefficients bias the estimate in a precisely defined way in-

(62) volving non-central chi-squared statistics. These appear to be
The only unknown quantity is f. From (34), we also know extremely useful in predicting model error for robust control
with high probability that, design from finite data records. Much still remains to be done

even for this restricted and analytically tractable case, partic-
AX - Ax 11p112 ularly in finding a means to bound the effect of the bias (the

tail of the impulse response) without having to perform addi-
Since A, must be positive, it follows that tional identification with ever larger parameter orders. This

11p112 < /A (63) ultimately may involve additional a priori quantitative knowl-
I - A,, wdge. We feel that this paper indicates a first step towards

provides a worst-case upper bound. Observe that this bound the more difficult problem of model structures which account
is known because .e is the computed variance estimate and for non-white noise, e.g., ARX or ARMAX models.
A. is selected by the user as the input variance. As a practical
matter, it is unlikely that # will achieve this bound. If it did,
then the noise variance Ae • 0, which for large N, will almost
never occur.

Using (3), we get Referenccs
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Now, suppose that the closed-loop system is stable and the
above inequality holds. Then the spectrum of y is bounded,
with high probability, by: of y and u are given, respectively,

by:

4,() 2IT(c )2 (•7)
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Worst-Case Control Design from Batch-Least-Squares Identification

ROBERT L. KosUT HENK ALING -t

Abstract A case study is presented to support the thesis were known, then a robust controller could be designed.
that high order models obtained from batch-least-squares pro- Various approaches have been put forth to resolve this
vide all the necessary significant information for robust control problem, e.g., [3], but these involve forms of prior in-
design. formation and/or approximations which are either very

difficult to obtain or are too coarse. For control design,
the error needs to be well known near the desired band-

1 Introduction width of the closed-loop system, which may not be known
beforehand. Hence, prior information on the impulse re-

m sponse, such as magnitude and rate of decay, is unlikely toS Suppose that the measured sampled-data set contribute significantly to a useable estimate of the error

near the desired bandwidth because the impulse response{y,, u, • = 1 : N} (1) bound provides only very low frequency and very high fre-

has been obtained from an unknown system where u is quency information. Ironically, any precise information
the scalar control input and y is the scalar sensed output. about the system dynamics near the desired bandwidth
Suppose further that it is known a priori that the system is likely to preclude the need for identification.
which generated tile data is stable, linear-time-invariant In this paper we propose the thesis that high order
(lti), and operating in open-loop. Hence, models obtained from batch-least-squares provide all the

necessary significant information for robust control de-
Y = Gu+ v (2) sign without invoking additional prior information. Acase study is presented which (of course) suprnorts thewhere G is an Iti operator with unknown transfer function thesis.

G(z). The output disturbance vt is known to be a zero-

mean sequence with the unknown spectrum 4%(w). The
problem is to use the measured data set (1) together with 2 Batch-Least-Squares
the a priori information to obtain estimates G(z) andm •(w) which can be used for control design.

Perhaps the most widely used procedure for obtaining theTo see the control problem more clearly, suppose some- estimates is via batch-least-squares where:

how we have obtained estimates G(z) and 4%(w). The3 next step is to design feedback controller. Let the

trol be G~z) - -- (5)
u = (3) A(z) 1 + a 1 z-' + ... + anz- (

m where K is Iti with transfer function K(z). Typically the A
controller K is designed for the estimated system IA(e')1 2  (6)

y3= , + v, spectrum{v} =$(w) (4) 1 N [(Ay - Bu), (7)

The problem is that the estimated system differs from the
true system (2) and hence, predicted performance, based where
on the estimate, may not at all be like the performance N
actualized when the controller is applied. If a bound on i(z), B(z) = arg rin,
the model error between the true and estimated systems A Z).(N Ay - Bu),]2  (8)

m.The authors arc with Integrated Systems, Inc., 3260 Jay Street. Thie number it will be referred to as the model order. (Ac-
Santa Clara, C2A 9505q.

I R~searrh sipported by AFOSI/Directorate of Madietnatial tually Ith numerator and denomltinator orders ned not

m Sciwnu. ,<,,trat 1,4,49620-89-C-01 19, and NSF (ranit ISI-91G1408. he the same ;is shown here.) In every practical s0itationt
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there is no finite value of n for which the right hand side and
in (8) is zero. That is, the true system is not in the model
set -. an axioml_ . ._._____,_I+GK +GIK a -

The great appeal of "least-squares," and the principle I + GK

reason for its ubiquity, is that, provided the input is suffi- Since K is designed for the estimated system, it follows
ciently rich in spectral content, a unique minimum of (8) that 1P., and "'P, are stable. Hence, K stabilizes the true
is always obtained. Furthermore, there are very efficient system if and only if (I+ATU!)- is stable. Because both
and reliable methods for computing the solution, typically T., and A are stable, K stabilizes the true system if and
involving square-root calculations such as the QR trans- only if
formation as well as lattice forms for very high model
orders. It is imperative that the calculations are done I1 + A(eJW)Tut.(iW)L # 0, VIW <_ 7r (16)
in this manner, for otherwise significant numerical errors
will accrue, even for a small number of parameters. There The well known condition for robust stability [1], and

are other reasons as well for using a QR method, e.g., (1) sufficient for (16), is that the loop-gain be less than one,
high model orders and large amounts of data are easily i.e.,

handled, (2) data from different experiments are readily I•ue(ew)A(e)I < 1, VIWI __ 7 (17)

combined without re-doing the entire estimation, and (3) To verify either (16) or (17) requires some means of es-
prediction errors can be computed for varying model or- timating A(ej') or a bound on IA(ei')I. In addition, to
ders-directly from the QR transformation. These factors predict closed-loop perrormance requires producing an es-
make it possible to easily and rapidly generate extremely timate of 4u(w), the sprectrum of w as defined in (12).
high order models from large amounts of data. This fa- Estimates of both can be obtained using standard spec-
cility in turn provides a great deal of information about tral methods (Ch.6,[2]) as follows:
the true system,

3 Robust Control Design
All the 1 variables are generated from the post-

Using the control (3) on the plant (2) yields the closed- identification data set:

loop system {e, u, I t = 1 : N} (19)

u = -Tu,,v (9) It is important to mention that spectral estimation tech-

where niques also introduce errors. How the spectral estimate
I TU- K (10) varies from the true is not known precisely although

Ty• -1 + GK 1 + GK asymptotic results are avaialble m2o. These are similar
To arrive at an expressio.i involving the estimates, let to asymptotic results for estimating model error from

batch-least-squares. Unfortunately, precise conditions for
c = Ay - Bu (11) which the asymptotic results are good approximations are

not known without invoking additional prior information,
denote the prediction error after identification. Using the which we argue may not be obtainable in practice. For
plant description (2) gives the equivalent expression for this reason we procede heuristically, and simply utilize
E: the spectral estimates.

S= W+AU Based on these estimates, we obtain the following ap-
= Av (12) proximations to the closed-loop rms values

As a result the closed-loop system is equivalently: rrns(y) = tJ" i^ w2

Y Ty. ( 2w (20)
it = -T,•,w rms(u) = --L

where 
where

1 *• A7',;, I -f A.T_:,. I ,
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are estimates of the actual closed-loop transfer functions the graph of c(t) for n = 60 shows a significantly smaller
in (14). Following (17), Ty, and T;w are stable if the variation over the identification samples t = 1 : 256.
estimated loop-gain satisfies,

SIit.,(eiI)A(ew)I < 1, VJwJ _< i (22) Control Design Based on the above results it seems
reasonable to select a design model with an order in the

Since A(e"') is an approximation to A(ejw), satisfaction range 10 < n < 20. For illustrative purposes here we
of (22) does not imply that (17) holds. Moreover, since select three values n = 4,16,40. Figure 6 shows the
(17) is sufficient to insure (16), failure of (22) to hold does magnitude and phase of the frequency responses of the
not imply instability, but certainly merits some caution true system G(ej-) and the three estimates G,,(ei-) cor-
at those frequencies where the test fails. responding to n = 4,16,40. As suggested by the rms

plots in figure 2, the largest errors occur for n = 4, and
for n = 40, the estimates are "noisy." Similarly, figure

4 Case Study 7 shows the true spectrum (%(w) and the three spectral
estimates 1%,n(w) corresponding to n = 4,16,40.

Simulated System The computer simulated (true) To evaluate the efficacy of the closed-loop rms appoxi-
I system is the mass-spring-damper mechanism shown in mations in (20), a set of LQG controllers were designed for

figure 1, where u is the control force and d is an exoge- each of the plant models as follows. For each n = 4, 16,40,
nous disturbance force. The unknown disturbance d is a the observer was based on the model,
zero-mean random sequence with variance (.001)2. TheI user applies a zero-mean sequence with unit variance as A,,Y = Bu + e,
the control input for identification. The data set is stored
for 1024 samples. The sampling frequency for both con- where e, is taken as a white noise with unit variance. The

trol and sensing is 10 hz. regulator is then designed to minimize the expected value
of E'[Yl + (put) 2 ] for control weights p = 10,1, .1, .01.
Thus, we obtain the family of 12 controllers,

Model Order Selection Batch-least-squares esti-
mates are computed using MATRIXx from the data set u = -Kn~py
S{y,, ut I t = 1 : 512), thus, N = 512 in (1). The remaining
data set, {yt, ut I t = 513 : 1024}, is used for validation. Figure 8 shows the predicted and actual performance
Figure 2 shows the normalized rms values of the predition tradeoff between rms(y) and rms(u). Observe that for

error for model orders from 1 to 60 on both the identifi- n = 16,40, the predicted performance is very similar to

cation and validation data sets. Using the identification the actual performance, whereas for n = 4, the actual per-

data, the rms values continually decrease as the order in- formance is significantly better than the predicted. Recall

creases, which is to be expected because after a certain that n = 16 is considered to be an optimal choice based

point the model is fitting noise. This is verified using on the cross validation plots in figure 2. Beyond n = 16,
the validation data (lower bar plot of figure 2) where the no significant performance increases were observed.

rms values actual begin to slightly increase with increas- The performance tradeoff of the different controllers
ing model order. Thus, beyond the range from n = 10 is not at all complete by just examining figure 8. This
to n = 20, no new information is really obtained in the does not show the robustness properties of the differ-
identification. Hence, the "optimal" model order from ent controllers. For n = 16, figure 9 shows the esti-
i this data set is in this range. This phenomena can also mated loop-gain and the actual loop-
be seen by examing the prediction error time series, shown ga ITein)A(en)w for two of the 12 LQG designs,
in figure 3 for model orders n = 4, 16,60. namely, for model order n = 16 with control weights

In figure 3, as the model order increases from 4 to p = 1,.01. For the smaller weight, p = .01, there is

16, the variation (rms) of the error decreases. However, no robustness guarantee because the estimated loop gain

increasing the order from 16 to 60 decreases the error is greater than 1 at some high frequencies. However, the

over the identification samples (t = 1 : 512), whereas actual loop gain remains less than 1 for all frequencies.

the error slightly increases over the validation samples In addition, in every other case (not shown here), the es-

(t = 513 : 1024). To emphasize the effect of noise fitting, timated loop-gain was always larger (more conservative)
we repeated the experiment with the shorter identifica- than the actual gain.

tion set {y,,u, I t = I : 256). The results are shown in

figures 4-5. Now the rms of the prediction error using the
validation data increases more sharply for n > 12, and

6
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System Identification for Robust Control Design

ROBERT L. KOSUT *t

I Abstract Some recent results are summarized in parame- certain (closed-loop) transfer function is strictly-poitive-real
ter set estimation for linear-time-invariant systems. The ex- (SPR) [18,10,1], e.g., H(s) is SPR if it is stable and satisfies,

m tension to nonlinear uncertain systems is explored and some Re[H(j-)]> 0 ,V (1)
preliminary results are presented. Robust control design re-
quirements are also discussed. The main difficulty, to put it simply, is that the true system

is neuer in the model set - there are always dynamical phe-
nomena which remain unaccounted - and unfortunately, the

I Introduction SPR condition fails to hold. Moreover, the theory based on
this property is sufficient and hence does not predict what will
happen if the SPR condition is violated.

I There are many ways to design or configure an adaptive con-

trol system. Figure 1 depicts the self-tuning-regulator (STR) Under sufficiently slow adaptation the method of averaging
configuration [2]. Two feedback processes make it adaptive, can be applied to expose a mechanism for stability and in-
namely: (i) a model parameter estimator, and (ii) a control stability [1],[21],[2]. This theory replaces the above SPR con-3 design rule. dition with a "signal dependent positivity condition" of the

form,

Model Parameters 8 R = J Re[H(jo)]S(w) d. > 0 (2)

where S(w) > 0 is a spectral density matrix associated with

Control Parameter the exogenous inputs. This condition is much less restrictive
Design Estimator because even if H(jw) fails to satisfy the SPR condition (1)

at some frequencies, (2) can still hold provided the excitation
is concentrated at those frequencies where Re[H(jw)] > 0.
Moreover, if any eigenvalue of R is negative then the system

r Pis unstable. In using the theory for design, the user must
select an appropriate combination of data filtering and excita-
tion spectrum. This task is similar to problems encountered
in system identification [17] except that here the system be-

ing identified is in closed-loop, which vastly complicates-the
Figure 1: Self Tuning Regulator (STR). selction process.

To see this more clearly, consider the function r(O) defined
The parameter estimator operates on the input-output data via Figure 2, i.e. , for every parameter choice 0 there is a
obtained from measurements (y, u) of the plant system and resulting parameter estimate denoted by the function r7(e).
produces a model parameter estimate 0 E IRP. The param-
eter estimate is transformed by the control design rule into
a controller parameter p E IRE, which is then used in a pre-I determined parametric controller structure in feedback with
the actual system. Paramete

It is obviously very easy to construct an adaptive system: Design Estimator
just connect a control design rule and an estimator together. i3 However, it is very difficult to insure that the resulting adap- r
tive system will provide acceptable performance. This has Control t
been the goal of research in this area for over 30 years. L

Roughly, if the true system is in the model set which un-

derlies the parameter estimator, then the adaptive system will
asymptotically reduce the error signal for arbitrary bounded
exogenous inputs (r, d). Technically it is necessary that a a Figure 2: Illustration of the parameter map r.

*Senior Scientist, Integrated Systems Inc., 2500 Mission College
Blvd., Santa Clara, CA 95054; Consulting Professor, Information It is shown in [19] that under slow adaptation, convergence
Systems Lab, Stanford University. points of the STR system in Figure 1 are precisely the fixed-

t Research support from AFOSR, Directorate of Math. & Inf- points of Moreover, the fixed-point is stable if (2) holds and is
Sciences, tinder Contract P49620-89-C-01 19. unstable otherwise.
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In summary, the averaging result shows that stability of the forts, e.g. , see [3,41 and the references therein.

(nonlinear) adaptive system can be deduced from a frequency It the remainder of the paper we principally address set
domain condition (2) which mixes signals and systems. How- estimation for linear and nonlinear systems. Section 2 pro-
ever, there are some difficulties in utilizing the theory. In the ides a review of some recent results in linear set estimation
first place, it is no trivial task to determine the fixed point(s) and some new results in nonlinear set estimation. Section 3
of the map r, i.e. , those 8 E IRP satisfying e = r(e). Sec- andes a resectin onlinear rst estm a nt s withondly, both the transfer function 11(s) and the spectrum S(w) provides a brief section on linear robust control of plants with
depend in a complicated manner on the fixed-point and it both parametric and nonlinear uncertainty set descriptions.

is unclear how to precisely manipulate data filters and input
spectrum to acheive either a satisfactory fixed-point and/or a
satsfactory transient response in the adaptive parameter tra- 2 Set Estimation
jectory. To put it bluntly, the theory fails to produce a "user
friendly" design method. S

If we agree that the fundamantal difficulty in analyzing the Set estimators should at least have the following features:
adaptive system is the ubiquitous model uncertainty, then one
alternate approach is to configure an adaptive control sys- 9 Uncertain Parameters. A capability to account for that

tem which specifically accounts for the uncertainty. One such part of the system which is known to be governed by I
scheme, depicted in Figure 3, replaces the parameter estimator physical laws or able to be described by known func-

in Figure 1 with an estimator that produces a model set or set tions dependent on certain constant parameters. The

of uncertainty. This would avoid the major obstacle, namely, parameters may only be known to lie within some range

that the true system is not in the model set used for identifi- of variation.

cation. This type of estimator is referred to as an uncertaintyl Uncertain Dylnamics. Able to account for uncertain dy-
estimator or a set estimator. This differs from the estimator namics for which a parametric structure is not avail-
in the usual adaptive schemes (ef. Figure 1), where a single able or assumed, e.g., neglected high frequency flexible I
estimated model is produced, with no information regarding modes, uncertain memoryless nonlinearities, etc..
its accuracy.

Model Set 2.1 Linear Set Estimation

Robust Set Consider the linear-time-invariant model set: 3
g(e, W) = {G,(1 + AW) : 0 E (, I1 11oG -_ 1} (3)

Control Plant y The set 9(0, W) describes both parametric and nonparamet-
nic uncertainty. The parametric uncertainty is reflected in the
set {Go : 0 E 0} where Go is a parametric transfer function
with uncertain parameters 9 E e C IRP. The mapping 0 -. Go
is known but the exact parameter values are known only to be

Figure 3: Adaptive control with uncertainty estimation. in some set 0. The nonparametric uncertainty is reflected in
the set {A - IfAfIIo S_ I). Thus A is an uncertain linear-time-
invariant system only known to be stable and unity boundedThe second change is to use a robust control design rule, i.e., in the 7los-norm, which for continuous time systems is definedI

one that accepts a model set in the form produced by the set as t W.supwm wh i an for din cret time systems as

estimator. Under these conditions, if the true system which as 116,11 = sup. IA(jw)l and for discrete time systems as

generated the measured data is contained in the estimated IIAIIO. = supl,,l<, IA(e"')I. W is a stable transfer function

set, then the adaptive system is not only stable, but acheives which reflects tEe size of the relative (or multiplicative) un-

the maximum performance possible given the estimated set of certainty, i.e.

uncertainty. G
Proceding in this way we have transformed the problem of = G"OW '

adaptive control design from analysis with trial-and-error into
separate synthesis problems in set estimation and robust con- The above expression suggests interpreting the set 9(0,W)
trol design. In effect this is a "separation principal" analogous as a set of transfer functions "centered" at the parametric
to that in the LQG design. transfer function Go with a "radius of uncertainty" of G@W.

At present, methodologies for the design of set estimators It is usually possible in a modeling process to arrive at an
are under development, e.g. , [23], [12], [16], [131,[9],[14], [24]. initial parameter set E3o and a weighting transfer function Wo.
On the other hand, there is a reasonable maturity of method- In the case when the prior set 9(G0, W0) is too coarse to lead
ologies for robust control design, particularly for plants with to tolerable closed-loop performance levels, then a model set

uncertain nonparametric linear dynamics, e.g., [20], [25], [5,6], estimator is required to refine the prior information by making
[8], [22]. Robust control design of plants with parametric un- use of measured data. Specifically, we extract the following
certainty seems still undc-rdeveloperl despite some heroic ef- result from [14].
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TihFOREM Example 1: Input Nonlinearity

Suppose that the the measured data set Consider the system shown in Figure 4 and described by:

{y,u:t=1,...,N} y= Go, u=f(u) (6

is obtained from the sampled-data system

y = Gu

where G has the discrete-time transfer function
G(z). Furthermore, suppose that from prior in-
formation

G E 9(o 0, W0)
and the parametric transfer function in (3) has Figure 4: Input nonlinearity.
the structure:

Make the following assumptions:
Ge(z) = Be(z)___! l, 1z-*+..+b,.z-m

Ae(z) 1 + alz- 1 +. "}-+ anZ-n 1. The function f(.) is a memoryless time-invariant non-

0T = [a, b. . b.n] linearity known to lie in the sector

Under these conditions, if G is initially at rest, Jf(u) - kul • 6jul, Viul p (7)

and is either stable or in a stabilizing feedback, where 6 < k and p > 0 are known constants.
then: 2. Go is a continuous-time linear-time-invariant system

G E 9(O0, Wo) n g(ON, WO) (4) with stable transfer function Go(s) and where 9 E IRP
are uncertain parameters.

where eN is the parameter set estimate, 3. The measured data set is

en = IS: IIAe y- BoeulIN: < IIBOWoUIN} (5) {y(t),u(t) : t = 1,..., N)

with the N-point signal norm where the time t is normalized to the sampling interval.

11-11'N Et1zt The constants (k, 6, p) quantify the uncertainty in the non-

The above result implies that if the true parametric transfer linear function f(.) in much the same way that W bounds
the uncertain linear-time-invariant nonparametric dynamicsfunction is e, where 8,,e E lY is the true parameter in the previous section. A problem here, though, is that ti,

value, then the input to the linear part of the system, is not a measured
variable. Moreover, the nonlinear function precludes describ-

A good data set would insure that the new set estimate is ing any discrete-time transfer function from u into y. However,
strictly inside the prior estimate, that is provided f(-) is sufficiently smooth, for fast sampling we have

Oo n E N C EO the following sampled-data approximation

y ,Z, Geai, ii = f(u) (8)
Since both AP and Be are affine functions of 0, it can be where now Ge(s) is approximated by the zero-order-hold z-

shown [14] that ON describes either an ellipsoid or an hyper- transform
boloid in flP, depending on the data. Moreover, although Go(z) = (1I -G(S)}
the set 0 0 n ON is not an ellipsoid, nonetheless a bounding s
ellipsoid can be obtained. This approximation is only valid at the sample times t E{1, ..... N). For example, if f(.) is a polynomial or rational

A similar result is obtained in [24] for a co-prime factor non- function, then there certainly exists a (not necessarily small)

parametric uncertainty structure rather than the multiplica-

tive one used here. More on bounding ellipsoids can be found region Jul _ p such that (7) holds.

in [7] who considered the problem of parameter set estimation To illustrate the problems in obtaining a set estimator even
with bounded noise and no unmodeled dynamics. for the approximate system (8), suppose that (k, 6, p) are

known, and we wish to estimate a parametric model for Go(z).
For illustrative purposes, suppose that Go(z) is in the two-

2.2 Nonlinear Set Estimation parameter set:

The preceding principals of set estimation for linear-time- Go(z) = BO(z) bz- = [ a 1
invariant systems can be applied to the set estimation of non- A( =) I+ az-' b (
linear systems. We will illustrate the problems using the fol- After some algebra one obtains the following equivalent in-
lowing three example systems: (i) an input nonlionearity, (ii) put/output description of (8):
an output nonlinearity, and (iii) a mechanical system with
backlawh. A114 -- Bou = Boe (i0)
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where e(t) is an uncertain sequence satisfying

~i~~gK -u(IVt = I,... N (11) t~

Since (k, 6, r) are known and u(t) is measured, the upper
bound on the error sequence is known at each time instant. tL0.4
Combining the above& expressions with prior information 0 E 'V' S-
Oo, we obtain the parameter set estimate ".'o-

e 0o n 0N

where 19N consist of those 0 satisfying, Figure 6: A flexible rotating system with backlash in the
gear-train.

6

rigid body and first tortional 'mode' for small angular de-
for all t 1,...,N. flections can be approxi - ated by the system of differential

equations,

Example 2: Output Nonlinearity JMi = u + D(i' 2 - ji) + K(y2 - yi)
JO1,2  = -i- (2- l (t a

In the above example, the nonlinearity was on the input. Now JLVS = ai -

consider the case where the nonlinearity is on the output (see = NG

Figure 5) where = Y2- NY3

Y = AV)) 9 •u(3
= f(), s = Geu (13) where u denotes the input applied torque, (Y1, Y2, Ys) are an-

"gular deflections as indicated in the figure, 9 is the rel.ive
gear angle, and f () is a memoryless nonlinearity arising from
backlash in the gear train. The constants are defined as fol-

u _ _ lows: JM, JG, and JL are the motor, motor gear, and load
inertias, respec .yely, N is the gear ratio which is greator than

one, and D, K are the dampi:.g and stiffness, respectively, of I
the elastic rod. The backlash nonlinearity f(.) has the typical
shape as shown in Figure 7.

Figure 5: Input nonlinearity.

Proceding as before we now have,

Aey - Bou = Aee (14) N
where now e(t) is an uncertain sequence satisfying --

le(t)l_< -_ ly(t)l, Vt = ,..,N (15) ,,'•l" ' "

In this case the set estimate (eN consists of those 0 satisfying,

t)+a(t-)-u(t-1) < 6 (y(t) + -11,(16)Figure 7: A typical backlash function.

The break-point parameter Yb relates to gear tecth spacing

for all t =1,...,N. and the slopes in the two regions relate to gear teeth shapes.
Typically for IzI > Yb the slope is very large whereas for Izi I
Yb the slope is very small. It is clear that for some positiv

Example 3: Mechanical System constants (k, 6, p) that f(-) satisfies the sector condition (7).
To illustrate how to compute a set estimate for the paran--

Consider the mechanical configuration depicted in Figure 6. eters of the mechanical system, suppose that the measured
variables are

This system represents the case where tortional actuation Is [aibe I
applied to a load through a flexible gear-train. The gearing

is shown to occur at the end of the flexible member, although I I
other combinations are certainly possible- and that (K, D) are uncertain parameters, i.e.

Neglecting any electronic dynamics, and assuming that the 0 [K

flexiblr rod is both uniform and damped, the motion of the D
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Observe 0-t the input to the nonlinear function is

JL-UU = N V3  
P0

One approach to describing a model set for this type of system ' y

is to approxirnat. either the input or output to the nonline :
fnmction. This would. be like the ideal situations in the pre-
ceding two example systems. In this case, since y3 is available
as a measurement, the acceleration j3 can be approximated
by high pass filtering the measured output y3. For example,
let

3= Fy, F(s) = (S )2

where 1/r is sufficiently large so as to capture the dominant Figure 9: Standard model

harmonics in the accelera'ion. Then,

LL ::- 1. Pe is a transfer matrix which depends on a parameter;Z: a = Ny3  0 IRE and which has the block structure:

With this ap~proximation the situation is very similar to the F 1  p 2 1F 1
example wuere the nonlinearity is on the output. However, 1 P22 P22
there is one difference: here the input to the nonlinear function
also contains a term do to fA, which can also be approximated 2. f() is a scalar memoryless nonlinearity in the sector,
by ii. Thus, the appropriate model can be described by the
feedback system shown in Figure 8. 0z < f(z) < fiz, VIZI < p

where 0 < a </3
X

Go u2 3. The measured data set is

{y(t),u(i) : t=I,-, N}

The standard form allows for scalar memoryless sector
bounded nonlinearties, but the measured signals (y, u) can be
vectors. Disturbances as well as nonparametric dynamic un-

Figure 8: Feedback nonlinearity, certainties can also be included by replacing the "feedback"

with a more complicated system and by adding another input.
The system is described by,

S= ~ [ A0], [= ] (17) 3 Robust Linear Control Desigik

After some algebra, we obtain, As an illustrative example, consider the uncertain nonlinear

JMfi + JGU plant with a linear feedback control,
Ae y d+f(ý), y=Gou, u=-Ky (19)

where
Ao(s) JMJGs2 + (JM + JG)(Ds + K) whre Go and K are linear-time-invariant systems, K is the

"linear feedback controller, f(.) is a memoryless nonlinearity,
The procedure described in Example 1 can now be applied to -, is the measured output to be controlled, and d is a dis-
obtain a set estimate which will contain the true parameters. tarbance as seen at the output. The control objective is to
Of course the precise conditions under which the true parame- attenuate the effect of the disturbance at the output lespite
ters are in the set estimate involv^ v.aaious approximations. In the unce:tainties in the system model. Specifically, the system
particular, dne consideration must be given to approximating uncertainties are as follows:
ui by fi.

a *lhe nonlinear function f(-) is in the sector,

2., Standard Model Structure If(9)- 11 <6 191, Vl9 <_ p

Even though the three example systems are fairly general, * the parameters in the linear-time-invariant system Go
it is also important to point out that they do not exhaust are in the set ?9.
all the myriad p )ssibilitieF. A very general model format, or
template, is characterized in Figure 9. Observe that these uncertainty sets can arise from a combi-

nation Cf set estimaliri and/or prior inr!,rnmation. From the
This m•ol•l foirm is disf-,.!;ed in detail in [15]. llcre we make control design viwil, rit the source of the oncertainty is not

thr folowivrig .IN',r t In jr 'oi r'1 ,' t
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A Family of Norms For System Identification Problems

Mohammnad-Ali Massoumnia~t

Robert L. Kosutl

Abstract
In this paper we introduce a family of norms that may prove useful in system identification

problems. The important property of the new norm is that for a given sequence its value in the
limit will converge to the supremum over all frequencies of the spectrum of the sequence. Using
this property, a procedure is outlined to approximately minimize the weighted £L. norm of the
frequency response estimation error.

I 1 Introduction

I The parametric approach to system identification is based on selecting an appropriate model structure
and a search for the parameters of the model that best describes the data. Usually, the best model
within the model set is characterized as the one that minimizes a selected norm of the predictionerrors. By far the most popular norm is the sum of the square of the prediction errors- the quadratic
norm. In this paper we introduce a new family of norms that seem to be useful in system identification

problems. The new norms have an interesting interpretation in the frequency domain and include theU usual quadratic norm as a special case. The important property of the new norm is that in the limit
its minimization is equivalent to minimizing the supremum over all frequencies of the spectrum of the
prediction error, or equivalently minimizing its £Lo norm.

E 2 Definitions and Preliminaries
Let us assume we are given a scalar bounded sequence {ei, i = 1,..., N} which in our application

represents the prediction errors computed from the observed data and a guessed model parameter
vector 0. Based on this sequence, form the (N + Al - 1) x MA matrix

el 0 ... 0
e 2  el -.. 0

I 1 em eAfl .

epN eN-l ... eNM+1
0 eN ""eN-M+2I , ep ..

0 0 eN

*This work was supported by National Science Foundation Grant No. ISI-9161408, and AFOSR Dir. of Math. and
Info. Sciences Grant No. F49620-89-C-0119.I Research Scientist, Integrated Systems Inc., 3260 Jay Street, Santa Clara, CA 95054

'Manager, lBa-sic research group, Integrated Sysfems Inc.
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where we assume I < M < IN. Note that ENAf is constant along the diagoinals, and for Al I ,

is a column vector with c/ 1i./ as its elements. To simplify the notation we (den1ote this vector by ]N. 1v
Moreover, the matrix EANM is completely specified when EN(= ELN) and the value of Al are given.

it is simple to see that the matrix ENMENM is symmetric, at lea1st positive semii-definite, and
Locplitz. The elements of this matrix are estimates of the autocorrelatioui function of the sequence ,,.
More explicitly, define the sequence a, (I - 0, . . , Al - I) in terms of c, a;s follows:

SN- (2)i
*j=1

Then a simple computation shows:
ao a, .... am-,[ a0  ao ". M-1

EIMENM -- a- a a...2 (3)

aAf-i aM-2 -" ao j

Using these definitions, we define the new norm as the maximum eigenvalue of ENMENM,

VM (EN)-A(ENAIENvAl)= d(ENAf) (4)

where A(F) denotes the maximum eigenvalue of F and a(F) denotes the maximum singular value

of F. For simplicity, we usually delete the argument of VM and assume it is understood to be a
function of EN which is itself formed from the prediction errors e. Note that Vm defined in (4) is not
mathematically a norm on 7ZN; however 1VAM(EN) is a valid norm for EN, and only to simplify the
presentation we refer to VM as a norm.

Also, for M = 1, VM is identified with the usual quadratic norm. From another point of view,
V, only includes an estimate of the autocorrelation function of the prediction error for zero shift, a0 .
Moreover, VM is nicely bounded by V1 as follows:

IIENb = Vi(EN) < VAf(EN) •< MVI(EN) = MIA'NII (2

To illustarte some of the properties of VM for M > 1, assume Al = 2. The maximum eigenvalue
of ENT2 E v2 is simple to compute and is given by

V2 = ao + jauI (6)

In this case, not only the sum of square of prediction errors is included in the performance measure,
but this norm also includes an estimate of the autocorrelation function of the prediction error at the
first time shift. Therefore, minimizing V2 will force jail to small values. This is a first attempt to
whitening the prediction error in addition to minimizing its variance .

Note that the whiteness of the prediction error is an important factor in validating a computed
model [5]. However, this desirable property of the prediction error is not reflected in any form in the
usual quadratic norm. But VM not only is a function of the variance of the prediction error but it also

is a function of the values. of the autocorrelation of the prediction error for time shifts up to M - 1,
and by increasing M more and more of the temporal behavior of this autocorrelation affects VM.
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3 Frequency Domain Properties

Now we discuss the frequency domain interpretation of the new norm. First assume the limit of ai

defined in (2) as N gocs to infinity exists:

li3r aj = -a (7)
N--*o

If, in addition, ii is in 11, then the spectrum of the prediction error is
CO

see(w)= • -(8)
k=-cc,

where we set i-k =ilk because we are dealing with a real sequence. It is shown in [3] that the following
are true

iT O(~d (9)

A(CM) < sup S&e(w) = rnm A(CM) (10)
I-I<_- M-.oo

A(CM) Ž inf Se,(w) = lirn .X(CM) (11)

where A(F) and A(F) denote respectively the smallest and the largest eigenvalue of F, and the Toeplitz
matrix CM is defined as follows:

Si Zo " M- 2 (12)SCM ([2

am-1 aM-2 "'" 0

To explore the convergence property of (10) as M goes to infinity, let us consider an exponentially
correlated sequence ei with autocorrelation function given by

3 =k r ', 0<r< 1 (13)

The spectrum of ei is simple to compute and is given by

1 - r 2

1 - 2rcosw + r 2  (14)

Let us denote the supremum of S,,(w) by S. In Figure 1 the values of 100(S-A(CM))/S are shown as
a function of M for values of r from 0.1 Lo 0.9. As can be seen, for small values of r (slightly correlated

' sequences) the convergence is rather fast. However, as r gets closer to one the number M for achieving
a preset accuracy increases considerably. This figure is very useful in selecting an appropriate value
for M when a bound for the spectral content of the prediction error is known. Moreover, explicit
computation shows that for ak given in (13) the convergence of 2A(CM) to inf• S,,(w) is considerably
faster than those observed in Figure 1.

Theorem 1 The following limits hold

lim EENT - 1 Se(w)dw (15)
N-0oo 2,r

lim ( unm - 2 (ENM)) = sup S" (w) (16)M--oo N--oo 1-1_<r

lim ( lim O72(ENM)) = inf Sf,(w) (17)
M--oo N--oo Iwl<

where we w; assumc that N goes to infinity faster than Al.
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Proof. Relation (15) follows from the definition of 40 and (9). Moreover, by definition of CM we have

lmENTMENM = CM (18)
N---oo)

Substituting this in (10) and (11) and noting that the eigenvalues of a matrix are continous functions

of the elements of the matrix the other results follow immediately.

In identification problems we estimate the model parameters 0 by minimizing VM(EN(O)). The
notation EN(0) emphasizes the fact that the prediction error is a function of 0 and the minimization
is carried over elements of 0. R~elation (16) is very illuminating in this respect and shows that by
minimizing Vm as M approaches infinity, the supremum over all frequencies of the spectrum of pre-
diction error is minimized. Because of this property, we refer to the identification problem using the
new norm as the Lo,, identification problem. In contrast, by minimizing the usual quadratic norm,
the integral of the spectrum of prediction error over all frequencies is minimized [5], and this can be
referred to as f.2 identification problem (see (15)).

,. As an aside, using (16) and (17), it is clear that the condition number of ENM is a good indication
". of the whiteness of the sequence ENq. When this condition number is close to 1, the spectral density

function is close to being constant over all frequencies and the sequence is close to being uncorrelated.
Large values of the condition number indicate that the sequence is correlated and the maximum and
minimum value of the spectral density are far apart.

Now we explore the usefullness of the new norm in identification problems and relate the Lo, norm
of the spectrum of the prediction error to L -norm of the transfer function estimation error. Following
the procedure used in [51, let us assume the true system output is generated by

Yj -=- Go(q)ut + ve (19)

where the additive noise v, has the spectrum
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with 11o(oo) = . Also assume the suggested model for the system has the form

yt = G(q,O)ut + II(q,O)et (21)
where 0 is the vector of unknown parameters. It is simple to show that the spectrum of the prediction
error in this case is given by [5]:

(w 0) =O)SU( + S""(W) (22)
III(ej, 0)12

where G G -. Go is the error in estimating the transfer function.
Unfortunately, the term S"I/IH)2 in (22) which depends on the parameter 0 prevents us from

directly relating the minimization of S,, to the minimization of IGI. To circumvent this difficulty, we
can first use a high order ARX model

A(q)yt = B(q)ut + et (23)

to approximate Ho(eiw) by 1/A(eJ"), and filter both ui and yt by A(q). Let us denote the filtered
input and output by u4 and y, respectively. Next use the following output error model to estimate
the model parameters 0 1/ - G(q 6)4, + e,( 24 )

Now using (22) we have

Se.(W, O) -IG(ewO)1 2IA(ej*d)J 2 Suu(w) + IA(ei'd)12 S,,.(w) (25)

If 1/1AI is a good approximation to IHOl, then the last term in (25) is a constant equal to Ao, and we
can write

IG(1 ,0)12 1A(ej")12Suu(w) S'!(WO) - (26)

Using (26), it is clear that minimizing the supremum of S,, in this case will directly lead to the
minimization of the weighted 4,, norm of G. Note that as is expected, the weighting IAI2Suu (;Z
Su /IIJo1 2) puts more emphasis on the frequency ranges where the signal to noise spectral ratio is
large. Also, by repeating the experiment with a different input (changing S,,u), we have the flexibility
of changing this weighting factor.

However, the approach we have outlined has a major draw back because it relies on using the
output error form in (24). The norm of the prediction error in this case is not necessarily a convex
function of the model parameters, and this may lead to a complicated minimization problem.

Note that after minimizing VM (for sufficiently large value of M), we can compute a good estimate
for the supremum over all frequencies of the left hand side of (26). Since the supremum over all
frequencies of the first term on the right hand side of (26) can be approximated by the minimum value
of VM, and the value of A0 (variance of the noise) can be approximated when we are computing the
ARX structure in (23). This gives a bound for the £oo norm of the modeling error.

I 4 Convergence and Convexity

I- The norm introduced in'(4) has some interesting properties that we shall discuss next. Let us fix
M, and assume we are given a model structure and identify the parameter vector 0 of this model
by minimizing Vp(EN(O)) where P is a positive integer less than M (P < M). Let us assumeI this optimization problem has a unique global minimum that we will denote by 0O', and denote
the prediction error sequence resulting from this choice of the parameter vector by EP = EN(OP).
Sirnilarly de.fiTne Of and EA z EN(OM).
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Theorem 2 V'ie following series of inequalitics hold:

p(pN) • V A( ! Vtq(E") < V 1M(E) (27)

Proof: Beginning from the left hand side, the first inequality follows from the fact that the elements
of El" are generated from the model parameters that minimize VI,. The second inequality follows
from the interlacing property of the eigenvalues of a symmetric matrix [2]. Note that (E-l ,)'Ef is
the first P x P principle minor of (Lf )TEfM , where EM and ENMA are defined in terms of El',
using (1). The third inequality follows from the fact that E"f is formed from model paramneters that
minimize VM.

0

The relation given in (27) is specially usefull if we set P = 1. Then 1/1 (E1 ) is the minimum
value of the usual least squares performance measure. Also in this case we can add another important

inequality to the set given in (27).

Corollary 1 The following series of inequalities hold

V, (E' ~) :• V, (EM) •ý VAf ( Emf)•l,(~IV( ýN ) <5 <_f (Ev^) :_
V, (E•,') + (,A - 1) max(In'l,...-, la'f -,1) (28)

where a! are computed from the elements of El using the relation given in (2).

Proof: The first three inequalities follow by setting P = 1 in (27). Moreover, because Q =

(ENM)T EM is Toeplitz with a' on its main diagonal, each eigenvalue of Q denoted by A satisfies the
following inequality

IA- all _< (M- 1)max(la'l,...,jaf_-11) (29)

This follows from Gershgorin's circle theorem [21 and hence the last inequality in (28) holds. Note
that the a! in (28) are estimates of the autocorrelation function of the prediction error computed from
parameters that are obtained by minimizing the quadratic norm.

C

Now let us assume that for a particular problem VI(EN(O)) and VM(EN(G)) both have unique

global minimum that are denoted by 01 and 0 1 respectively. Moreover, let us assume that in this
problem, the last term in (28) goes to zero as the number of data points increases. In other words
assume for a fixed M we have

lim max(la'l,..,al, )=0 (30) |N---ooIA -1)=0( )

Then using (28), it is clear that

lira V•(EuN(9'))= lira Vl(EN(9"')) (31) I

Now using the assumption on the uniqueness of the global minimum of VI, it is clear that in the
limit 01 and 0M will be identical. Put it more loosely, if the prediction error for the quadratic norm
minimization is white, then the parameters obtained by minimizing the new norm will be identical to
those obtained by minimizing the usual quadratic norm.

To guarantee that eack V, and VM have global minima only, let us choose an AItX model for the
structure of the system. In this case it is well known that the scaled prediction error can be written
a.s 1

"EN - 0-( - 4'0) (32)

I
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where 4) is the matrix of regression vectors and Y is the vector of output values 15]. In this case,
VI(EN(O)) is a convex function of 0, and the minimization problem has only global minima. Moreover,
if 41, is full column rank, then the minimum is unique.

Next we show that for an ARX model structure, VAI is also a convez function of the parameters.
To see this, note that the matrix ENM can be written as

IIAl M
EN , M Ti ENWIT(Y - ,I,O)wT (33)

where wiiE TRM is the standard basis column vector with 1 in its i-th entry and all other elements3 zero. Also the (N + M - 1) x N matrix Ti is defined as follows:

T= NxN (34)
O(M-i)xN

Moreover, denote the i-th column of 4F by qi and the i-th element of 8 E RL by O8. Then (33) can be
rewritten as

5

ENM = CO + CAO (35)
j=1

/ i=1

M
_1Cj :ý= E iw

* Note that Cj, j = 0,..., L, have the same special structure as ENM namely being constant along the
diagonals. Now using (35), it is clear that ENM is affine in 0, and -F(ENM) is a convex function of
0. Therefore, VM being the square of -(ENM) is also a convex function of 0 and the minimization
problem has only global minima in this case.

Using these facts, if we use an ARX model structure and if it happens that the resulting prediction
errors are white (and consequently the relation (30) holds), then we are guaranteed that the parameter

estimate using the new norm will be same as the parameters using the quadratic norm. This is
promising because for the sum square norm and ARX structure there are many established properties
[5] that readily extend to the new norm.

However, if the prediction error sequence is not white, which will be the case if the 'true' model
does not have an ARX structure, then the estimate given by minimizing VM will usually be different
from those obtained from the quadratic norm minimization. Note that the new norm forces the
autocorrelation of the prediction error for nonzero shifts to small values (whitens the prediction error)
and this proporty may result in a better estimate of the model parameters (compared to qudratic
norm for a given model order) when the true model is not actually inside the model set.

As we have shown previously, for an AR1X model structure, the matrix ENM is affine in the
parameters and we are interested in minimizing the maximum singular value of ENM. This problem
is already- discussed in the literature [7, 4] and a recent algorithm is proposed in [1]. However, by
exploiting the special structure of the matrices Ci defined in (35), it may be possible to increase the
efficiency of the algorithm in [1]. Also in our application, the size of the matrices involved is quite large
and special attention should be paid to the memory management and algorithmic implementation;
otherwise huge amounts of memory will be required to perform the optimization even for modest
values of M and N.
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Figure 2: Magnitude Plots 3
5 Numerical Example

We solved a numerical example to illustrate the properties of the new norm. For performing the
minimization, we used the standard OPTIMIZE routine available in MATRIXx softwrae package [6].
The true model was chosen to be the zero order hold equivalent of a second order lightly damped
mode sampled at 1 Hz. The frequency response of the true model is shown in Figure 2 as a solid line.
The measured output was assumed to be the sum of the output of the true model and a filtered white
guassian pseudo random sequence. The input is a white pseudo random guassian sequence. The signal
to noise ratio is chosen to be 5. The number of data points used is 512.

We assumed a second order ARX model for the system and estimated the parameters of the model
by minimizing V32 (ENv) and VI(EN). Note that the true model is in output error [5] form. The
resulting estimated transfer functions are denoted by G3 2 and G1 respectively, and the true transfer
function is denoted by Go with the magnitude of the frequency responses shown in Figure 2. The
magnitude of the errors Go-G 3 2 and G 0 -GI are shown in Figure 3. The spectrum and autocorrelation
of the prediction errors e02 and el that are obtained from the optimal parameter estimates 832 and
0' respectively are shown in Figures 4 and 5. The spectrum is estimated using a Hamming window

with a length of 32 points.
For the optimal estimates, the values of the objective functions are as follows: I

V32(EN(03 2 )) = 0.1926, Vl(EN(03 2 )) = 0.1473 (36)

VI(EN(6')) = 0.0956, V3 2(EN(O1)) = 0.2781 (37)

Note that the values of V3 2 (EN(0 3 2 )) and V3 2(EN(Ql)) are in close agreement with the maximum of

the spectrum of the prediction errors that are shown in Figure 4. Moreover, the values of nonzero
shifts of the autocorrelation of e 2 are much smaller than those of el. In other words, eP2 is Close to
being white but el is clearly correlated. However, the variance of ed2 is considerably larger than that

of el.

I
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6 Conclusion

Although we have presented some preiiminary results on the properties of the Loo identification prob- I
lem in this paper, much further work is required to explore the properties of the new norm in details.
To perform this task, an efficient implementation of the required minimization algorithm is required
so realistic high order models can be estimated and their properties can be compared with those of
the least square minimization. As we previously noted, the convexity of the new norm when an ARX
model is used is an important property, and hence many techniques of convex optimization can be
used for the solution of this problem.
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Abstract A new approach is given for the design of adap- Since G, the transfer function of the plant, is unknown, we could
tive robust control in the frequency domain. Starting with an only base our design of Ki on G0-,. such that
initial model and a robust stabilizing controller, the new (wind-
surfer) approach allows the bandwidth of the dosed-loop system K, = arg min 1 + -• Td
to be increased progressively through an iterative control-relevant 7I+Gi,.7 L,
system identification and control design procedure. Encouraging Note that, as usual, we have invoked the principle of certainty
results are obtained in the cage studies that serve as a benchmark equivalence. However, it is important to realize that
test for the new idea. SOK, _T'U

~ GKj
1 Introduction I 1 +.

It has long been understood that a key problem in control systems is not necesarily small, even though

design is to handle the uncertainties associates5 with the plant [12]. G,_ K,STwo main techniques for the analysis and designz of systems with I + Gi-%Kj 7-1

significant uncertainties are adaptive control [8] and robust control
[6 15]. is a minimum. This partly explains why traditional adaptive con-

In the traditional approach to analysis and design of an adap- trol systems, which invariably invoked the principle of certainty
tive control system [8], it is assumed that the unknown plant can equivalence, have unsatisfactory robustness property.
be represented by a model in which everything is known except In the robust control approach [6, 15], a controller is designed
for the values of a finite number of parameters. Once the param- based on a nominal model of the plant with the associated para-
ea-ta, are estimated (and even during the estimation process), the metric and unstructured model uncertainties explicitly taken into
principle of certainty equivalence is normally invoked to update account. Therefore stability robustness is guaranteed and perfor-
the controller. Normally the unstructured uncertainties of the mance robustness is achieved sometimes. The woeakness of this
model are ignored in this approach. Therefore it is not surprising, approach is that it considers only the a priori information on the
as pointed out in [18], that these adaptive controllers are often model, and neglects the fact that characteristics of the plant could
not robust. Further, the extensions'of the traditional approach to be learnt while it is being controlled. Therefore, the robust con-
adaptive control which purportedly cope with unstructured (and trol approach tends to result in a conservative design in terms
other) uncertainties involve conditions which are often hard to ap- of performance. It is likely that a posteriori knowledge about the
ply or to grasp intuitively, see for example [1, 3, 13). A further plant could be used to reduce the conservatism in a robust control
problem with the traditional approach is that extreme transient design.
excursions are possible even when global convergence and asymp-
totic performance are guaranteed [211.

To be more specific, we consider an adaptive control system as 2 The Windsurfer Approach to Adap-
shown in figure 1, where G is the unknown transfer function of the tive Control
plant. The time axis is divided into intervals such that during the
i" interval, the control input applied to the plant is obtained from By considering how humans learn windsurfing, Anderson and Kosut
Ki, where Ki is the transfer function of the controller designed (2) have made the following observations:
using the model G,.-I obtained at the end of the (i - 1)"' time
interval. I. The human first learns to control over a limited, bandwidth,

In an adaptive control problem, the ulterior objective for find- and learning pushes out the bandwidth over which an accu-
ing G0, an estimate of G updated from Gi- L, is to redesign a better rate model of the plant is known.
controller K.+÷ than K,, such that certain control objectives are 2. The human first implements a low gain controller, and learn-
improved. For example if 7T represents the desired complemen- ing allows the loop to be tightened.
tary :.cnsitivity function, then we may 4e to have

GK. _ U_1-, !ý Based on these observations an adaptive robust control design
,G, 1- < 7-TI Vi. philosophy, the windsurfer approach, is proposed in 121. It recog-

l+ K, I + GK,- I nizes that, at the outset, the plant characteristics can differ greatly
Implicitly, this means we would like to minimize from the estimated model at any one time, particularly during the

initial learning stage. In the new design approach, a low gain con-

7 VLtroller will first he implmerneited: and the control bandwidthi willI f G ;INl be smnall. llasedl on learning a frequency domain description of thi
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plant in closed- loop, withL te learning process progressively in- is Io longer small, where
creasing the bandwidth over which the plant is accurately known,.
the controller gain cast be increased appropriately over an incrcas- . (3 3)
ing frequency band. For details, refer to [2)- Importantly, in the I I -6 N h v)
method suggested, the necessary closed-loop system identification is ithe actual closed-loop transfer function of the system.
task is simplified into an open-loop system identification problem At this stage it is necessary to improve the accuracy of the
through the use of coprime fractional representations as discussed imodel in such a way that is relevant to the control objective.
in [9, 10). This means that we should try to finld Anr updated model C.41

It was shown recently in [19) that the best model for control such that
design cannot be derived from open-loop experiments alonec The
controller to be implemented should be taken into account by the GG+, =argini G K., _ "N IV. (3.4).
system identification experiments. Ilowever, this controller is not r + Gh'N., I + fAh,'N.,

yet available, as its determination rests on the results of the sys-
tem identification to be carried out. Hence. a general solution Equation 3.4 would be the formulal ion of a standard rational

to the combination of system identification and control design is function approximation problem, provided that G were known. In

necessarily iterative. It was also shown in [22) that an iterative the simulation (section 6), we shall take this approach by using a

approach for model refinement and control robustness enhance- known transfer function for G. This serves as a benchmark test of

merit can be developed for a H2 control problem. Although the the windsurfer approach as it corresponds to performing aystem

emphasis of (L9] is on the problem of modeling for control design, identification with an infinite number of noiseless measurements.
its approach is very similar to that of (2]. In the next section, we It is a topic of further research to deal with this problem in a I
would like to illustrate the windsurfer approach by considering a realistic system identification setting when only a finite number

model matching problem in the context of adaptive control, of (possibly noisy) input-output measurements are available.

Once G.+t is found, we can continue to increase the closed-loop
3 Adaptive Model Matching bandwidth by repeating the procedure described for Gi previously. I

However G1+1 should be used instead of Gj, and we specify a new
Let G be the unknown transfer function of the plant, and let sequence of functions TV1 ,+t with Tiii+s = V•i. The iterative
T7 represent a desired complementary sensitivity function. We ptrcs is continued until the end control objective is achieved or it
wish to achieve, through iteative system identification and control is prematurely terminated because of one or more of the following
design, the minimization of the cost function constraints: I

I___ GK T1I. fundamental performansce limitations due to right half plane

I + GK Lpoles and zeros of the plant and/or models [T].

where K is the transfer function of a controller to be design. 2. unstable model is obtained. (This is a consequence of our
We begin by designing a controller K1,o to stabilize a known simplified control design method. Appropriate extensions of

initial model Go, which may be obtained from an open-loop sys- the control design method (15] allow us to deal with this
tem identification exercise. If K1.0 also stabilizes the unknown restriction.)
transfer function G, then we say that Kio robustly stabilizes Go. 3. finite control energy. I
Notice that we use Ki,, to denote the jr" controller designed us-
ing the i"' model which has a transfer function Gi. In general, we
attach the subscript j,i to a transfer function to denote that it 4 Closed-loop System Identification
is either spicified or derived on the basis of the i: model for the
plaot at the j'h iteration of control design. Since Go may involve We fimt review a method for closed-loop system identification de-
significant uncertainties, the resulting controller K1 ,o may not be veloped by Hansen [[C:. Subsequently, in theorem 4.2, we demon-

able to achieve a small value for strate that with appropriate signal filtering, Hansen's method pro-

GoKt,o Tvides a suitable framework to carry out the cakn rof-r-epvant system
-I-+Go K1 o -identification formulated in section :. For the sake of expositoryI

simplicity, we shall consider only scalar plants. We begin with the

while robustly stabilizing Go. In general, we need to consider how following theorem (20]:

to handle the question of securing robust stabilization of Gi by Theorem 4.t If K i us a controller, where X and Y are
Ki.j. This is bound up with the question of selection of Ts. It is stabe proper trnnsferfunctions, and ifN and D are stable proper
in fact to be expected that a sequence of TV will be selected in trans fernfunctios a nd if Noan De atsta

such a way that the end control objective can be approached in transfer functions that satisfy the Ezroal identify

stages. We shall therefore proceed as follows. NX + DY = I,
Asociated with each of the models G,, a sequence of con-

trollers Kji is to be designed such that then the set of all plants stabilized by the controller K is precisely

= G [-4 Vi3) the set of elements in
K+., = rg an N+ : R is a stable proper transfer function).

where the sequence of functions Ti.I, is specified with T7i+a,i
normally of wider bandwidth than Tdi,, and with T'1 ,i resulting Consider the feedback system shown in figure 4, where y and

in a controller K 1, that robustly stabilizes G,- A stage will be u are the measured output and the control input, respectively,

reached (say when j = N) where the bandwidth of the nominal e is an unpredictable white disturbance, and r, and r2 are user

closed-loop transfer function, applied inputs. It is assumed that K,.i is a known stabilizing
controller, G is unexactlv known and possibly unstable, and, as isGi Km., (3.2) standard (141, Hf is imperfectly known, stable and inversely stable.

" I + G. AN, (3.2)'The system identification problem is to obtain improved estimates

of G and If from a finite interval of measured and known data
cannot be increae.d further without causing the effects of model {y,u,r1,r2 : 0 < t < T) I
uncertainties in Gi to he too significant. This occurs when the Following llansen [10), we introduce the stable proper transfer
value of functions Xj.i, YV,. N,.,, and D9., which satisfy

,- T•.W,9

I



-- y . ,• -" D. - -,.• ,.,(4.7)

where rj is a st~ble proper transfer function. Also define the
S= ,filtered output error

and +ý = YD.Y,,q - ridos),

The interpretation is that Gi is a known but imperfect model of where, wdh r2 = 0,
the plant which is also stabilized by K,.j. Applying theorem 4.1 "i ".
as shown in 101, there exist stable proper transfer functions /fj 7= D,y - MVu,
and Sj, with Sj also inversely stable, such that r•= reference signal

G = Ni + kYf.i (4.1) y = plant output.
A- RjXiJ.'

u = control input.

1 .1 = i (4.2) 7T1u C is an error arising in the (open-loop) identification of Rijthrough an estimate ,-,. Then the filtered output error can le
where R.j denotes the pa-ametrisation of G using the il model ezpressed as

and its associated j'A controller Kj,d.
As a result, systeus id atification of G and H in dosed-loop = (1 +I _ - Kjj rl + H

is equivalent to system identification of C z stable proper trans- I + GK1 , I+0 K 1 .i) I + GK1 '
fer functions Rj, and Sj.. Using equations 4.1 and 4.2, we can

represent the feedback system as shown in figure 4. ii.: proof is not given due to space lmitations.
From figure 4, we can write Su.-)ao that the valus of

,6 = Aj,Or+ Sije. (4.3) GKm, G.K,, 48
where B 1+K " , (4.8)

where cl = xj,,V + j.,nu, (4.4) 1+Gj: I+G~j
has becom: large. As it was described in section 3, we want a new

and identification of G via G,+t for which
13 = Diy-- u. (4.5)

However, as G ) G.~s K,- (4.9)
u =KjLi(ri -- Y) + 1`2 1+Gji 1+G~~~

and is small. We are going to use the rij parametrization of Gi+l. By

= Xi substituting equations 41 and 4.7 into expression 4.9, and notingKS" -- Y•'d'that

equation 4.4 can be re-written as K,,, = t,

a = Xi,rlr + Yj,,r 2 . (4.6) we can, after simplification, conclude that

It is important to observe from equations 4.3, 4.5 and 4.6 that I 'I GK 0',+K 1  =IYiiXi,(R, -Ij)jI
a depends on the applied signals re and r2 operated on by known 31 + ok,, + o,+ I I X " "
stable proper transfer functions Xi.j and Yj, respectively, and I (4.10)
depends on measured signals y and u operated by known stable should be small.
proper transfer functions D. and N, respectively. Moreover, a
is indep ndent of the transfer functions G and H and the distur- Remarks

bance e. Hence the system identification of G and H in closed-loop * Note that
has been recast into the system identification of Rjd and Sid in T 1,i _ GKj,
open-loop. We shall next state a result which is highly relevant I 1 + GK.i
to the system identification step of the windsurfer approach to is the actual clcsed-loop transfer finction 'fthe system, and
adaptive control.

Theorem 4.2 Let the controller K1 • stabilize the plant transfer "-GiKi

function G and the model transfer function I + GOKj.i

Ni is the nominal ciosed-loop transfer functi•• c.' the system.

G, = D-i Therefore, using similar substitutions that rmulted in equa-

tion 4.10, we can obtain

where N, and D, are stable proper transfer functions, and let T - = Yi,,X,,(R,, - R.,). (4.11)

=i=•_ ., 1,.wever, since

whr -e XN,, and Yj, are stable proper transfer functions satisfying we therefore have
the Bezout identity

7',., -7',.. = Y,.,X,.,F%. (,4.12)
N, X,., + D. Y,, = 1.

Lel G, +16e a nah er m odel of G, also sta billhzed by Kj.i and there- 3ly comparing the argument of the 11- norm ,en in ex-
et haring ae notermodl o t dpression 4.8 ,;#h the left hand side ofequstior .12, ;see

fore hainq a descripton nimrnreat, y ti'a. when the value of
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- , ~N-ite .,

I +. 01i. I +G;K.

has became large; that is, when the closed-loop property of afnd
the actual system (7',,) is significantly different from the Y,., -. ,
closed-loop property of the nominal system (Tp,), the value Since the paranetriratiun of C by 14, depends intirately on

we shall briefly explain how Q,.. is obtained in tlte dc•ign of the
llymi~i~i R?•.Jo controller K,,. We will use the noottons nr and d0 to denotue

will be large. the numerator polynonial and the denominator polynomial of a

Prom the signals defined in theorem 4.2, we observed that rtional transfer funion

/Rj, the transfer function to be identified, is excited by the

signal a, where n c .

or Xj.ird, dG.

and t~where do, has no zeros in the closed right half s-plane, if no. has

X =j + i no zeros on the imaginary axis of the s-plane, we can write

Since the nominal closed-loop transfer function of the system G- = R."]'i(ri - 8)is GiKjdG.

I + - GKj-' where all zj have positive real parts, and RG. has no zero* in the

we can write closed right half s-plane. By writing Ci as

- i C' Ix. = • C, (G~.bdcd.,1

7Therefore, Xj1 , will have large magnitude when we try to where
push the nominal dosed-loop bandwidth beyond the nom- , '(Zi* + a)
inal open-loop bandwidth. Since a model usually has its [Gil. = G ...i + i' is the complex-conjugate of zi,

uncertainties become significant for frequencies beyond its
bandwidth, from figure 4, we see that if the spectrum of rl and

is white, we automatically get the right weighting for the (Gil = ,z" -s) )

input to Aij for the system identification scheme. =l,(zi+a)

e It is shown in theorem 4.2 that the effect of e on f is g given we have factored Gi as a product or its minimum-phase factor

by . Note that this is the effect of e on y attenuated (Gi]., and the associated all-pass factor [Gi].. We can design a

by the sensitivity function of the actual closed-loop system. controller, using the internal model control (IMC) approach [IS],
by setting

Q,.. [I,].,-'F,. (5.3)

5 Approximate Identification of the Rjw
Transfer Function for IMC Controller where F1 . is a low pass filter of the form

Design 
s + {• "

In section 4, we have shown that the closed-loop system identifi- with n chosen large enough so that Qj is proper, and lij selected

cation of the plant transfer function G can be reformulated into (possibly on-line) small enough so that Ki. robustly stabilizes G(..
an open-loop system identification of the stable proper transfer In the ideal situation where Gi = G is stable and minimum-
function Rij that parametrized the transfer function G via the phase, it follows that the nominal and the actual closed-loop trans-

equation Nj + RijYi.i fer functions of the system are equal and are given by the transfer

G = D + d function Fj.j. Therefore A.,i is both the nominal and actual dosed-
Di -RjXi, loop system bandwidth with a -3ndB attenuation. In general,

In this and the following sections, we shall, for simplicity, study Gi # G and Aj,, serves only a3 an approximate bandwidth of the

the case where the plant is stable and has no zeros on the imagi- actual closed-loop system.

nary axis ofthe s-plane, and where the IMC method (1S5 is used to With the controller designed using the above procedure, we
design the controller K,,,. We shall also assume that all estimates shall now show that the transfer function to be identif-d, Rj,,

is the product of a known stable proper transfer function and an
If the modal unknown stable strictly-proper transfer function. An analysis of

Iii the form of the unknown factor in Rj indicates how it can be
Di sensibly approximated by a low-order transfer function. We shall

is also stable, we can let Ni = Gi and Di I so that first rewrite equation 5.1 as I
R~j Rj = G-G (5.4

=, 1 (5,1) 1" = + QG.,(G - ,)

Then we can obtain, after substituting equations 5.2 and 5.3 into
where Qi.j is a stable proper transfer function that parametrized equation 5.4, and performing some algebraic manipulations,

the controller f,~ H,, = ([(Gild,-, .-I - ,dn. (5.5)

dj.d d+ nK_ no

and Note that equation 5.5 can also be written as
Q0 + ~~(5.2)q.(56

l+ . H.,., RRj,9 (56) I

I



(,., = [G.J,d, r.. (.S.) '

is a know n stable pm oper tranisfer function, and If w.,,d• .h.(5 10

I--. = d. nG'. (5,8) where ti.C tC i ii k r•.o i wd-r rdcr stabli strictly proper trans-
dK.,.,d( J nK, nG f'er fuirt~tnu tOwn y utI'). -F equtations 5• 3, 5,6, and 5 10 into

is an unknown stable strictly proper transfer function that depends equation 5 9, we cn %11,%v tlAt tihl %YstVM 1eatification problem
on the unknown transfer function G; Therefore the problemn of hiecomcs ou,, of fimfilr'
identifying IL~a ha~s become one of identifying its unknown factor . ar'ml' .Y,(, -)!. (ll
F?,S-. We shall summarize this imnportant resgult in the following r.I Ar n9i, f,

Theorem 5.1 Consider a plant which has an unknown table tinrk

proper transfer function G, and a model with a known stable * Since Ys is the nominal sensitivity function of the closed-
proper transfer function G.. If G and Gi have no zeros along loop system, we immediately see that the frequency shaping
ite imaginary azis of the s-plane, and in the identification criterion given by equation 5.11 will

force the updated model to have small modellingerroe in the

(G.[.]G[I],, range of frequencies where the nominal sensitivity function
where (G•l., is the minimum-phase factor of Gi, and [Gil, is the cannot be made small by the controller K,..
all-pass factor of Gi, ten with w When updating the model using the equation

•G +I÷ = G. + ,rai

and I- °dQj.iI= ( the order of the model may inceAe. To prevent the model
order from increasing indefinitely, we use a frequency weighted

where n is chosen such that Q,.i is a stable proper transfer Junc. balanced truncation scheme to reduce the ordex of G,+,.
tion, the controller K Specifically, we find

' Q,iGi G,+% =- QmiG .+Ki,i _ )K",i

will robustly stabilize G, for all sufficiently symall values ofAj 2! 0. .1 1 1 i+t jG.,i 1  + ?Kji
Furthermore, the unknown stable strictly proper transfer function where .i+, is the reduced order model. If the model order

G - Gi is restric -' to m, the controller will be at moat of order 2m
&j -- 1(see controller design equations given in theorem 5.1). Inn bthis way the controller complexity will be limited.

can be factorized as

wher fij is an unknown stable proper transfer function to be 6 Simulation Results
identified, and T? R.j is a known ssable proper ttensotr function
given by We shall present some simulation results of applying the wind-

R.,j = JGi],,dr,.., surfer approach to the control of a plant with the transfer funzction

where d,., is the denominator polynomial of the filter F.i. G(s) = 9
(s + 1)(S7 + 0.06,+ 9)

Remarks We first summarize the procedure in the following algorithm:
Step 1:

" Note that the factorization of Rj. given in theorem 5.1 is

naturally induced by the IMC [15] controller design proce- Set G. = Go, where Go is the transfer function of an
dure that we have adopted. initial model of the plant.

" The poles of Aijate the poles of 7Tj, the actual closed-loop Step 2:
transfer function of the system. Factorize G,

* It is important to note that R,.= 0 if and only if G = Gi. G. FacorzeG,.,

"* The order of R.j is constraint by the degree of the polyno- where [Gil- is the minmum-phase factor of C,, andm ial dK,..dG, which is an unknown. ( Gil. is the mia e ul -p aw fa tor of G , n

(Gd.= is the associated all.pasa factor of Gi.

As we do not know the order of fij a priori, and since only Step 3:
step response information is available, it is reasonable to employ For j 1, find
a low-order transfer function for the approximate identification
of R-4 . Since we are going to identity Rij (actually RP.) and K Q .= . "
update Gi to Gi+1 when the step response of the actual closed- I + Q,,Gi,
loop system exhibits unacceptable oscillations and/or overshoots, With
we expect hij to have complex-conjugate poles. Therefore, the
lowest possible order that we can assume for the transfer function [G.].,-' F5 .
which serve as an approximation of Rij is two. where the positive integer ii and the parameter A,.i in

It was shown in equation 4.10 that the system identification the transfer function

problem is to find (_ , ).
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arc Chiosxll such that Q,. is a Statble proper trallsici
function, and Kg,, robustly stabilihcis G. in the sent-c! N
that tile Steil response of tile actual closý'd-100op Sys gc
tern has, at most, little oscillations and/or overshoots,

Stop here it'such a robust stabilizing controller cannot Ij7N.., - TN Ii, 1 I, i*,.
be found. Also stop here if the robust stabilizing con- therefore, if the observed sep stf'p se A "'A, i:sl,,lits mudh
troller results in a closed-loop system which meets the more oscillations and/or o r!J.oAlt thae, the d,-s, •,. t t;

specified bandwidth. Otherwise. proceed to the next respotise of Try,. we would explect
step. I'% ,I,• •1 . I

Step 4.

Letj - j+ I and set Aii = Aj + t for small ( > 0, and hence, I
and redesign the controller Ki.i using the equations IVTt,- ., I n , >0

given in Step3. Stop here if the design produces a ro- Since the peak gain also provides a Ilooc lower bound for

bust stabilizing controller with the closed-loop system the /1- gain, it is likely that

satisfying the specified bandwidth. Otherwise, repeat
this step if K.i robustly stabilizes Gi; else proceed to Te ,
the next step.

becomes large when the observed actual step response ex-
Step 5: hibits muech more oseillation& and/or overshoots than the

Perfornm ratLionsl function approximation to obtain desired one.

- . This explins why, in the simulation, the models are updated
Fi- = argm-in sIAfJ,'Yj(k.j - 01- whenever the actual step response exhibits unacceptafblc os-

dillations and/or overshoots.
Then update the model using the following set of equa-

tions: The simulation results axe presented in figure S and figure 6.
k = [Gd-dri,.. These figures correspond respectively to the following case studies:

rni = Ri j Ij, * Case 1: the initial model is Go(s) = -$•,.3

sird *- . Case 2: the initial model is Go(s) = o-4

i-i r "We present unit step responses at xrious steps in the system

Step 6; identification/control design iteration, and frequency responses I
achieved just before the iteration process is stopped.

If G+1+ is stable, find the reduced order model In the first case study, see figure 5, the bandwidth of the closed-

Gi+IKii- _ K. i lop system cannot be increased beyond 10 iad/sece because we
& Z-gmin ave stopped the iterative system identification and control designI I + Gi+ Ki,i I + qKj. U ' proess when an unstable model is obtained. Note that only two

Otherwise, stop here. model updates, 01 and G1, are required in the process, and the

rc.ults are suficiently good for most practical purposes.
Step 7: The results for the second case study are given in fi.", r t

These results show that the closed-l-)op bandwidth can easily be
Set Gi = 15j+1 and return to Step 2. pushed to 10red/sec with very good step responses. Note that in

this case, the model has to be updated only once.
Remarks Remark

In the algorithm, rational function approximation has to be U
carried out when 11Th.. -TN.i )j is no longer small. Broadly * We must emphasize that in these simulations, instead of

speaking, this will correspond to a significant difference be- performing a system identification using input-output mea-

tween the designed nominal performance (depending on Gi surements, we actually perform the model approximation

and Kl,i) and the actual performance (depending on G and i, = arg min1i~ti, 5 y(., _
Kjvi). In particular, the observed step response may exhibit I
much more oscillations and/or overshoots than the designed
values. This is not of course the same thing as guaranteeing where kd is obtained from the known G. The reasons for
that the If,, error above has became large, but neither is it doing this are:
unrelated. 1. Our results, although preliminary, serve as a bench-

, To be more precise, we define the peak gain of a system, mark in the sense that using the transfer function G
whose transfer function is T, by corresponds to performing system identification with

an infinite number of noiseless measurements.

SUp P 2. We like to know how serious the problems may be due
1.-t° "to employing a low-order approximation for Fj. This

This is also equal to the total variation of the system's unit is important for later system identification studies.

step response (41 defined as the sum of all consecutive peak- 3. We are, at this stage, more concerned with the concept

to-valley differences in the unit step response. it can be of iterative system identification and control design as

shown (5) that, if T is a stable strictly proper transfer func- applied to adaptive robust control, rather than the de-

tion, tails.
1T171 < 117l11 S 2n ITI_. 4. Efficient algorithms for performing H_,, system identi-

where n is the order of the transfer function T. Now we fication are still lacking, and the corresponding theory I
consider the peak error is still not well understood 111. 16. 17).

I
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7 Discussions and Conclusions , . ... ..

we have revicwcd in section I the strength -nd weakness c( both 1131 a L 9-1. 04 K L.. S 1 S -" , A -

1.. ttAu. (..5"-A 1)...- '('c: I C'...A . I.'
the traditional adaptive control and the robust control design MI
methods. These methods should be able to complement each other 1. 1. St,- - i'-' I' '• -•

and there should be natural ways it, which they could bc blended R.RA"(.WnIT

harmoniously. We proposed that, one of the possible ways is by lo1l u *.. ..... I- :z.5, r-•0 I'• C -o. eo,..,
the windsurfer approach, which was first mentioned in 12]. We 9.1. 1515
have shown, by simulation, that by starting with a (crude) initial ... R K U - - '-

p~.o s. (:,),: I~ I- CA. 0- 1*61
model of the plant and a (small bandwidth) robustly stabilizing

controller, the bandwidth of the closed-loop system can be in- J... . C.- ...4 . 5. 59.
creased progressively through an iterative control-relevant system 111 C E P^,. I. V--..o I A• • d so CG S-... R

identification and control design procedure. We shall highlight r c,.-T.- Ad--. C-9 AtC6 .. ,, .C•w.. 0-.s1
P-1 a~c U.ý t~~c01--. IEEFE "n-. A-t:

the following points which we believe are reasons for the success C- s. D. IM
of the approach: [191 RJ A-- 1.t1fIa, f. C-.uW•• k

* The use of control-relevant frequency weighting in the sys- tEL ,.•. Tt- .- c.ý . 15I

tern identification criterion. tl w.-. C-" Sr-... s, A r-..s-u.
A**--hu. iUrr P- IMI

a Updating of the mode! when its effects is no longer small in (III z._.d. a,- i..t s....•, R...d • a Ada....

the closed-loop response. This will ensure that model uncer- C."M Syi.d , D,• d sr- EV .. & AnIu. IM.

ainties are em phasized in the correct range of frequencies. lf IL __ • s.-a, IAC&,.. p..s, Me

* The controller designed by using the IMC method always CC , *1.

has integrdl action. Therefore it is insensitive to model un-
certainties at low frequencies. provioo-, the gain of the model
at low frequencies is of the right sign. * G

* The controller designed by using the IMC method induces a
natural factorization in the parametrization of the unknown
transfer function of the plant. This enable the system idea-
tification problem to be solved effectively.

In conclusion, we would like to emphasize that only the case F9tuce 1: Adaptive thatroSl SYaM
of stable plant and model is considered in this preliminary study.
We will like to address the following problems in the near future:

o The extension of the method to deal with unstable plant
and model.

* Use of orthogonalized exponentials in the system identifies- X
tion procedure such that it becomes a convex optimization
problem.

* To prove that the algorithm actually converges in somesense.* To study other control design methods in the context or the

windsurfer approach. Figure 2: Ctosed4oop system
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Adaptive Robust Control: On-Line Learning

BRIAN D. 0. ANDERSON ' ROBERT L. KOSUT I

Abstract A method of on-line adaptation and learning 6 pro- and control over an increasing frequency band; this is essentially a

posed which makes use of a probing signal whose frequency content linear systems, as opposed to adaptive systems, exervise.

is concentrated at the bandwidth of the current controller. As the It would also be desirable to show that when the behaviour of

plant is learned the procedure naturally increases the learningband- the plant over a certain bandwidth had been learned and certain

width. controller gains implemented, it would be natural to apply a probing

signal at the upper limit or this bandwidth (perhaps in handling

transients) so that the bandwidth of knowledge of the plant was

1 Introduction expanded.

It is very easy to construct an adaptive system: just connect a

controller design rule and a model parameter estimat together. 2 Closed-Loop Identification
This kind of adaptive control system operates along roughly the
following lines. A model for the unknown plant is assumed in which

everything is known but the values of a finite num)eF of oprazetam For the sake of expository simplicity, we shall restrict sttention to

These parameters have the property that when they are known, the palar plants. The following result can be found in one form or

controller can be defined. It too has a finite number of adjustable another in 1 and the references therein.

parameters, the values of which depend on the plant parameters.

By observing the plant input and output, the plant parameters Theorem 1 Suppose that X,YN,D are stable transfer factioni

are learned and/or tracked, and the controller parameters are then satisfying

set according to some design rule. Sometimes it is the controller XN + YD 1 (1)
parameters which are learned directly. Certain choices of controller
parametrization lends itself to this approa&, others do not. Then:

What is absent in this approach is the recognition that the es- (i) All controllers C which stabilize the plant P = NID arc in

timated plant parametric model during the learning phase Can be the set of transfer functions ,

a poor representation of the true plant. This mismatch between X+QD
the plant and the estimated model can cause poor performance via : Q stabe (2)

such phenomena as parameter drifting and bursting. All of this has -QN

been reported in the literature and under certain conditions has (ii) All plants P abilized b the controller C = X/Y are in the

been analyzed and explained, (11, 121. -i of transf P stiona

In this paper we invoke a different design philosophy than that act of transfer/fnctions ,

expressed by the previous reasoning. The new reasoning would have rN +-RY Stable (3)
to recognize at the outset that the true plant can differ greatly from D- RX 3

the estimated model at any one time, particularly during the initial

Since all rational transfer functions can be expressed as a ratio of
Nature provides examples of this kind of adaptive control, and stable transfer functions, it follows that part (i) gives a parametriza-

it seems that many such examples do not exhibit the traditional tion of all stabilizing rational controllers of rational plants.I operating strategy. In particular, consider how humans learn wind-

surfing, where the human is the adaptive controller. Several obser- Statement (ii), which follows directly from (i) by interchanging

vations can be made: (1) The problem has multiple inputs. (2) The the plant and controller, was developed in 3, 4] for use in dosed.

human first learns to control over a limited bandwidth, and learning loop identification for the problem of experiment design. Similar

pushes out the bandwidth. (3) The human first implements a low results are also in [8]. In this paper we also utilize this result, but

gain controller; and learning causes the loops to be tightened (this is for a slightly different, purpose.
linked with 2). These observations suggest that one could contem- Consider the feedback system,

plate an adaptive controller based on learning a frequency domain

description of the plaut, with the learning process pushing out the Cu + He (4)

bandwidth over which the plant was accurately known. For such a u = Ko(ri - V) + r2 (5)
concept to be valid and consistent with point 3 above, it would be

necessary to demonstrate, at least for a broad class of plants, that a where (y, u) are the measured output and control input, respec-

low gain controller can be contemplated for plants with significant tively, e is an unpredictable disturbance, and (rs, r2) are user ap-

uncertainty at high frequencies, and that reduction in the struc- plied inputs. It is assumed that K0 is a stabilizing feedback com-

tured uncertainty progressively allow increase of the controller gain pensator. This implies some knowlwdge of G, but otherwise G and

H are assumed unknown. The plant is the pair (G, H) where G is

*Systems Engineering Dept., Australian National University, possibly unstable and, as is standard. H and H-3 are stable [6].

Canberra, Australia The identification problem is to obtain estimates of (G, H) from a

I Integrated Systems Inc., 3260 Jay St., Saitta Clara, CA 95054. finite set of measured and known data {y, u, ri, r 2 : 0 < t < T).
Research support from AFOSR, Directorate of Mathematical and Following identification, the controller is to be re-designed to im-

Information Sciences, under Contract F49620-89-C-01 19. prove performance of the closed-loop system.
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Stable Plant Le, us consider the special case when the plant G - Update d = Go + I
G is stable. Suppose also that Go is stable and that K0 stabilizes I - RQo
Go. Then, by Theorem 1, it can be shown that K 0 stabilizes G iff ControllerDesign -= argminjjlid,.jd - •GQ1
there exists a stable R and stable mini-phase S, such that

R S Rcpcat
+.N RQo Although we can not offer any proof at this time, we believe that

where Kothis iterative procedure provides a natural approach to learning by

Q. h I +Ko (7) gradually increasing the bandwidth of the controller. The essential
Q +GoKo features fall out of the fractional representation theory, in particular -

Again, an interpretation is that KO stabilizes all plants in the set via the transformation from the (G, H) system in dosed-loop to the

{ + sR} (R, S)-system in open-loop, and subsequent identification of the
{Go + I -- RQ-O- : R stable) (8) (R, S) system to obtain estimates of (G. H),

As result, identification of (G, H) in dosed-loop is equivalent to
identification of the stable open-loop (R, S)-system, References

03 = Rat + Se (9) (1] B.D.O. Anderson, R.R. Bitmead, C.R. Johnson, Jr., P.V.

where P, a are given by Kokotovic, R.L. Kosut, I.M.Y. Mareels, L. Praly, and B.D.
Riedle, (1986),Slaiility of Adaptive Systems: Passivity sad

S= y-- Gou (10) Averaging Analysis, MIT Press, 1986.

f= QO,-i + (1 - QoGO)r2 (11) [21 K.J. Astr~m and B. Wittenmark, Adaptive Control, Addison-

,-,!--'ve that (a,3) depend on measured and applied signals Wesley, 1989.

(y, u, rl,r2) operated on by known stable systems (GO,Qo). [3] F. Hansen, A Fractional Representation Approach to Closed-
Loop System Identifieation and Experiment Des ign, PhD dis-

Example To further motivate identifying the (R,S)-system, sertation, Stanford University, March 1989.

consider the following example: (4] F. Hansen, G.F. Franklin, and R.L. Kosut, "Closed-loop identi-
9 fication via the fractional representation: experiment design,"
G =Proc. 19sq ACC, Pittsburgh, PA. 1989.

( + 1)(S2 +.063 + 9) 15] R. L. Kosut, M. Lau, and S. Boyd (1990), "Identification of

systems with parametric and nonparametric uncertainty," toGo = t+ 1 appear, Prec. 1990€ A CC. June 1990, San Diego. CA.•

Q0 = 4(s + 1) (6] L. Ljung, System Identification: Theory for the User, Prentice-
(s + 2)2 Hall, 1987.

Figure 1 shows the magnitude of P. and G - Go vs. frequency. [7] P. J. Parker and RL R. Bitmead , "Adaptive Frequency Re-
These are very close showing that identification of R is close to sponse Identification," Proc. 26th IEEE CDC, pp. 348-353,
identification of the model error G - Go. Los Angeles, CA, Dec. 1987.

.... _ -([8] T.T. Tay, J.B. Moore, and R. Horowitz, "Idirect adaptive
techniques for fixed control enhancement," Inc. J. of Control,

-' i50:1941-1959, 1989.

191 M. Vidyasagar, Control System Synthesis: A Factorizalionw Approach, MIT Press, Cambridge, Mass., 1985.

Figure 1: Magnitude plots of R and G-Go vs. frequency.

Thus, we are led to the following iterative idcntification algorithm 3
for stable plants in dosed-loop. A similar formulation is available
for the general case where the plant is possibly unstable.

__0_ I
Initialize: 6 = Goo, ' = = 1 oo

I + Goo Koo

Update G 0 =G, Q=Q, K 0  Q
I-QoGo

Identification input : u = Ko(rg - v) + r2 I
1R - Update h = argminlIly - Gou- R(Qorl + (I - QoGo)r2)II

98


